Learning the

Micro Language Lab

Dennis Bathory Kitsz

7 Green Mountain Micro

First Edition
Second Printing Roxbury, Vermont

The Micro Language Lab:

Learning the

© 1983 by Dennis Bathory Kitsz. All rights reserved.
Learning the 6809 audio cassettes ©® 1983 by Dennis Bathory Kitsz.

First Edition
First Printing
Printed in the United States of America.

ISBN 0—916015—00—9

Recording: Steve Lusk, Claire Manfredonia, JoAnn Trottier
Recording Supervision and Tape Editing: Dennis Bathory Kitsz
Ilustrations: Jim (Doc) Holliday

Cover, Layout and Design: Dennis Kitsz

Typesetting: Northfield News; 1JG Inc.

Additional Design and Preparation: M. J. Rufino Associates, Marie Lapre” Grabon
Sherlock Holmes: Peter Clarke

Dr. Watson: Kalvos Gesamte

Automebile: Steve’s Honda

Marge: Claire Manfredonia

Cook: Steve Lusk

Mac: RB2—3

The Drivers: Kalvos Gesamte and JoAnn Trottier

Chocolate Cream Pie: Bev Fischer

Thanks to Jane and Ed Pincus, Chuck Trapp, Harv Pennington, Bruce Stuart, RB2—
3, Jim and Ingrid Wilson, Tom Bentley, Mary Bocage, Michael Rufino, Matthew and
Gabriel and Beth Ann Betit, Paul Wiener

Notebooks by Mid-~America Plastics

No portion of this book or these cassettes may be reproduced m whole or in part, by any means
ncluding but not limited 1o electromechanical. electronic, and photoreproductive, or may be
stored in any vlectronic data storage and retrieval device except as specified in the Micro
Language Lab instructions and limited to the tne and equipment of the purchaser, without the
oos written permission of the author and Green Mountain Micro. No software license 1s
granted with the purchase of the Micro Language Lab; example programs are for personal use
only. Neither the publisher nor the author assumes any responsibility or liability for loss or
damages caused or alleged 10 be caused directly o indirectly by appheation of the information
or software presented in the Micro Language Lab, including but not hmited to any interruption
of service, loss of business or anhicipatory profits, or consequential demages resulting front the
use, operation or application of such miormation or software. Also, no patent liability is
assumed with respect to the use of the information contained herein. While every precaution
has been taken in the preparation of the Micro Language Lab, the publisher and the author
assume nG responsibility for errors or omissions.

TRS—80, EDTASM+, Color Cemputer, Radio Shack, and Color BASIC are trademarks of Tandy
Corporation. Portions of the EDTASM+ manual and the TRS—80 Technical Reference Manual ©Radio
Shack, a division of Tandy Corporation. Reprinted by permission.

Cataloging Information:

Kitsz, Dennis Bathory, 1949

Learning the 6809. {The Micro Language Lab). viii, 222 pp.
Roxbury, Vermont, Green Mountain Micro: 1983.

Preface

When IBM introduced its Personal Computer with grand
gestures and flourishes, the reviewers and the public
seemed overwhelmed, as if in the presence of royalty. The
PC’s 16-bit microprocessor was revered and its BASIC
praised, while its operating flaws were forgiven. Everyone
seemed to say, “Good show, IBM. Wish we’d thought of
that!”

Tandy Corporation doesn’t have that classy IBM image.
When Radio Shack introduced its Color Computer, hardly
anyone noticed. It looked for all the world like another toy,
said the critics.

Maybe Radio Shack needs to work on its grand gestures
and flourishes a little harder. That toylike Color Computer
appeared more than a year before that IBM PC. 50
although the microcomputing press pointed to the PC as
innovative for including line, circle, draw and paint
commands, they had conveniently overlooked that these
same BASIC commands were actually introduced a year
earlier on the Color Computer. And while critics talked
about 16-bit processing power in the IBM machine, they had
conveniently overlooked that both the PC and the Color
Computer contain powerful 16-bit “internal” -- but 8-bit
“external” -- microprocessors.

As 1 said, it's an image problem. The Color Computer, at
one-quarter or less the cost of IBM’s pricey PC, is the
computing bargain of the early 1980s. And the heart of the
bargain les in the heart of the computer: the 6809
Processor.

The 6809 is the Maserati of the 6800 family. It’s fast, sleek
and powerful. Almost anything any processor can do, the
6809 can do better. Its software capability is almost
unrivaled in the 8-bit world, and its hardware features are
stable and easily applied. Combined with its cousins - the
6883 address processor, the 6847 video processor, and the
6821 interface circuit -- the 6809 creates a simple yet
versatile personal computer. The Color computer is
actually a practical computer application suggested by
Motorola, the 6809’s manufacturer.

Learning the 6&)9

w

“Learning the 6809” was created to fill a knowledge gap.
The 6800 family hasn't produced any real “pop” processors.
The 6502 achieved its glamour in the Apple, the Z80 became
known through its presence in so many different TRS-80
computers. The 6809 looks different. It works in powerful
ways which are, unfortunately, alien to users of 6502, Z80 or
IBM-PC-style 8088 computing.

Be prepared to work hard; this course isn’t an information
giveaway. If you want to find out how to copy Joe’s
Lumbergrunters game, forget it; the answer won’t be here.
But you will be able to answer the question yourself by
applying the knowledge, tools and techniques I present.
This isn’t “Using the 6809 to Learn the Color Computer” --
it’s “Learning the 6809”, where the Color Computer is the
practical example. When you finish this series of tapes,
you'll have the tools to explore the programming limits of
the Color Computer, you'll be prepared for programming
other 6809-based machines, and you'll be ready for the
programming concepts and principles of the 68000 family of
full 16-bit processors.

Work hard. With concentrated listening, by working out
each example and by answering every question, these 24
half-hour lessons should take you anywhere from 50 to 100
hours to complete. By then, you'll be speaking 6809. Work,
enjoy, and good luck.

W(T‘z ps

Acknowledgments

It was midway through a long, bleak Vermont winter day
spent with an incomprehensible microprocessor data book
that | conceived of the Micro Language Lab. The data book
made no sense to me. Engineers, 1 thought, don’t speak
English. No, I reconsidered, that’s wrong. Engineers speak
eloquently, but in an English far different from the rest of us.
Just like musicians. And typographers. And artists. And
priests.

A book was needed for 6809 users, and Color Computer
owners in particular. I glanced at my library of programming
books, lcoking desperately for ideas and inspiration.
Nothing there. I couldn’t think like Adam Osborne and |
couldn’t write like Bill Barden.

But talking was something fluid. Ideas that came to me
easily when | was speaking would choke and gasp at my
typing fingertips. Perhaps if I took microphone to hand, |
could close my eves and imagine a circle of anxious faces
around me - hanging on every word -- and the eloguence
wauld begin...

The project got down to business at the same time Green
Mountain Micro was established as my full-time occupation.
| sat across from my old friend and business partner, RB2—
3 (born with that name -- really!), and presented the idea.
Sure, talk, great, he said, do it.

That was the easy part. The talking came quickly. But with
me a musician and RB an artist, we found ourselves as
babes in the business woods. We needed pretty notebooks,
crates of cassettes, someone to print cassette labels and
stick them on, a good and accurate typesetter, a nearby
printer, recording and editing facilities, a duplicator, and a
hundred sundries.

Everyone went to work. RB, our friends and new employees
JoAnn and Steve, and my wife did the recording in my
music studio. [edited the tapes onto the floor in a two-foot
heap of qutteral stumbles and flubbering stutters. Graphics
designers visiting from New York were ingloriously put to
work on the layout. The typesetting was done very
efficiently by computer connection to California, but on the
trip back, the shiny (and expensive) new strips of typeset

Learning the 68()9 v

got lost -- twice! -- in the back rooms at Federal Express.
People (specifically me) got sick, the printer went on
Christmas vacation, and our New York visitors escaped in
the dark of the night.

Meanwhile, advertisements placed three months ahead of
time began to appear. Faithful customers had placed orders
for the holidays. We worked round-the-clock, only to have
the last few weeks tumble into an abyss of chaos and
exhaustion. We blew our deadline. As I write this, the final
pieces fit together. The result is Learning the 6809, what |
consider my -- and Green Mountain Micro’s - finest work.

During the craziness of preparation, our combination home
and office took on the look of a factory as dedicated people
traipsed in and out, crossing paths at 3:30 a.m. in 25-below
winter weather. Those deserving my sincerest thanks:

-- RB2-3, for going along with the Micro Language Lab idea
and for leaving me alone and phone-free for a whole month.
-- Jim (the Doctor) Holliday, for completing three hundred
illustrations in a record two weeks; and Lynda, for not
holding those all-nighters against us.

- Mary Bocage and Michael Rufino, who escaped in the
night leaving it all under control; Marie Lapre Grabon for
finding it under control.

-- Chuck Trapp, for controlling those typesetting codes for
three straight weeks and through two lost shipments; Harv
Pennington, for delivering on the nromise; Bruce Stuart for
remaining cool; and Paul Wiener for half-duplex.

-- Jim Wilson, Tom Bentley, and M. Dickey Drysdale, all of
whose last-minute cooperation alleviated the typesetting-in-
Vermont syndrome.

-- JoAnn Trottier and Steve Lusk, who realized too late the
meaning of “going on salary”.

-- and for things many and varied: Claire, Peter Clarke, Deb
Marshall, Charlie Freiberg, Claire, N. Spike Maggio, Gerald
and Susan D’Amico, Cornelius (“the burritos are in”)
Murray, Claire, Tom Hardy of Motorola, Greg Keilty, those
first faithful 80 customers, and Claire.

Contents:

1. INTRODUCTION

Introduction; necessary items; what you will learn; what is
assembly language; assembly language is not BASIC,
comparisons and contrasts; speed and flexibility demonstrations;
programs

2. NUMBER SYSTEMS

Introduction; everyday non-decimal systems; binary system;
Sherlock Holmes scenario; powers of 2, bits and the alphabet;
hexadecimal names; counting; ASCIL; program 4.

3. THE MICROPROCESSOR

Introduction; names and terminclogy, ALU; accumulator;
memory; addreses; Program Counter and registers; moving a
message to the screen; sample programs; condition codes;
compares; source code; programs 5-8.

4. MNEMONICS

Introduction and sumrary; mnemonics; opcodes and operands;
tables, addresses, and offsets; labels; machine language and
BASIC: stacks; subroutines; writing a program; origins and ends;
programs 8-10.

5. EDITOR/ASSEMBLER

Introduction and summary; source and object code; opcodes,
operands, and hex rode; mnemonics; insert, delete, print,
number, and edit; editor messages; program 11.

6. ADDRESSING MODES - 1

Introduction; jargon: how information is stored in memory;
inherent addressing; register addressing; immediate addressing;
extended addressing, direct addressing; mnemonics and
examples; review.

7. ADDRESSING MODES - 2

Introduction and summary; indexed addressing; zero and
constant offsets; automatic increment and decrement;
accumulator offsets; examples and mnemonics; relative
addressing; signed numbers; branching; counting; summary;
program 12.

8. INSTRUCTIONS - 1

Introduction and summary of registers; reading data sheet tables;
instruction operations in binary and hexadecimal; ADD and
SUBtract; logical AND, logical OR, COMplement {logical NOT),
logical Exclusive-OR; shifts and rotates; DECrement and
INCrement; NEGate; program 13.

9. MAKING THINGS HAPPEN - 1

Memory maps, reserved vector and control area; the SAM; write-
only registers; ports; video display generator; high speed; video
paging; summary and examples; programs 14—16.

10. MAKING THINGS HAPPEN - 2

Summary; machine language in BASIC DATA statements; source
code equivalents; hand assembly; displaying hexadecimal
numbers; covnerting a number to an ASCH character; converting

a byte to two 4-bit numbers; summary and examples; program17.

11. HAND ASSEMBLY - 1

Summary; screen display and update; hand assembly of LDA,
LDB, LDY, TFR, STA, STB, of calls and loops, of indexed
operands, and of relative branches.

17

27

37

45

53

63

75

89

97

vii

12. HAND ASSEMBLY - 2

Continued hand assembly of loads, stores, subroutines and
relative branches; locating labels; running the hand-assembled
program; ASCII conflicts with video display generator; POKEing
as a solution, EDTASM+ assembly; first half course summary;
programs 18—20.

13. TIMING AND SOUND - 1

Timing in microprocessors; delay loops; Morse Code examples;
interrupts; lookup tables, sound; silence; programs 21—22.

14. TIMING AND SOUND -2

Summary; regularity; producing tones; timing calculations; using
the assembler; programs 23—25.

15. INDEXED INDIRECT AND STRUCTURE - 1

Introduction; locating information indirectly; the Game of Life:
selecting color graphics modes; creating program setup
parameters; scratchpad memory; filling memory; program 26.

i6. INDEXED INDIRECT AND STRUCTURE - 2

Using the stack; FCB and FDB pseudo-ops; filling memory using
stack operations; constant-offset indexed; indirect indexed; using
high-resclution color graphics; rotation and branching.

17. INDEXED INDIRECT AND STRUCTURE - 3

Summary; completing the Game of Life; indexed indirect review;
creating commented listings; drawing on the listing; structural
(flow) chart; pseudo-ops; summary; program 27.

18. POSITION INDEPENDENT CODE - 1

Definition of position independence; P.1. instructions; using LEA
instructions; program—counter relative; relative subroutines;
branches, long branches; simple, simple conditional, signed and
unsigned conditional branches; examples; programs 28—29.

19. POSITION INDEPENDENT CODE - 2

Completion of moving program,; also, coverage of miscellaneous
Instructions: ABX, ADC, BIT, DAA, EXG, MUL, NOP, SBC,
SEX, TST: examples; program 29.

20. REPRESENTATION OF NUMBERS

Integers and signs (review); powrs of two; floating point; binary
representation; samples and examples; arithmetic; program 30.

21. USING BASIC

Protecting memory; free memory space; using CLEAR; offsets to
origin using CLOADM,; using FCC; high-resolution storage; string
packing and VARPTR; EXEC and USR; transferring information;
warnings; summary, examples; programs 31—33.

22. INTERRUPTS - 1

NMI, IRQ, FIRQSWI, SWI2,SWI3; setting and resetting
interrupts; vectors; PIA synchronization; creating a software
clock; RTI; chaining vectors; auto pre-decrement; program 34.

23, INTERRUPTS - 2

SYNC and CWAI: PIA control functions; horizontal and vertical
synchronization; field synchronization; mixing alphanumerics and
graphics; labeling examples; interrupt service routines; creating a
multi—mode display; program 35.

24. COURSE SUMMARY

Debugging; methods; stepping through memory; stepping
through execution; how the programs in this course were
debugged; brief summary of the entire course.

103

113

121

131

139

145

155

165

173

181

191

199

209

Hello. P'm Dennis Kitsz, your guide through the
subminiature world of assembly language programming for
the 6809 microprocessor. As you move with me through
these new software concepts, I believe you'll constantly
have mixed emotions. You'll likely find it rewarding . . .
frustrating . .. enlightening. .. tedious — as well as very fast
and powerful.

You probably know Color BASIC or Extended Color
BASIC. But please start off learning with a blank slate;
clear BASIC from your mind. Except for a few early
examples, BASIC won’t help you to learn 6809 assembly
language. And, if you haven’t found out already, you'll be
surprised to discover how slowly BASIC really does work
for you. On the other hand, it is a language that spoils you,
with many convenient features, error messages, and
programming prompts. By contrast, assembly language
will at first seem the height of tedious absurdity. “All that
just to clear the screen?”, you will ask.

Don’t worry. The feeling is almost universal. I'll admit right
here that the breakthrough in learning assembly language
for me took almost a year. There was no one to guide me.
And because I remember that sense of frustration, I want to
guide you.

If you're a newcomer to 6809, but know other processors,
be prepared for some major differences in concept and
approach, These are different languages we’ll be working
with. So whether you're a seasoned programmer or
discovering assembly language for the first time, don’t rush
through these tapes; work with each one. Try every
program. I've organized each lesson carefully so I won't
waste your time, but even so, every concept will be
presented and reinforced; most demonstration programs
are provided on tape to save you the typing. So turn off the
TV or radio, send the kids to bed, unhook the telephone,
and pack the spouse off to bowling or a movie. More than
anything else, assembly language takes concentration, the
elimination of distractions, and -~ occasionally -— the
ability to suspend time and reality. Let me say part of that

Learning the

This is the orograssed learning
section of the Ricre Language
Lab. In this colusn you will
find guestions and answers about
the accospanying text in the
forw of quick questions, Alsg,
your regular exercises and
self-tests appear in this
colusn, To make best use of
these guestions, start at the
top of the page, and use a card
to reveal each guestion but to
cover the answer, Try to answer
the guestion, and imgediately
compare yowr answer to the
answer in the book,

For full wuse of the Micro
Language Lab, follow these steps
for each lesson: First, listen
to the cassette tapes and follow
along. Second, read the tent
and attespt the accompanying
guestions as you go alomg.
Third, start over and attewpt
the questions by thewselves.
Repeat the secomd and third
steps urtil you can anseer all
the guestions without reference
to the text. Then you are ready
for the rext lesson.

It works like thiss
+ How many steps are involved in
using the MNicro Language Lab
prograseed learning?

Three sieps are imvolved in the
prograesed learning.

6807

Requirements

& Hhat is the first of the thres
steps in the Hicro Languape Llab
prograsesd learning?

The first step is to listem o
the cassette tapes.

% What is the second of the
three steps in the Micro
Language Lab programeed
learning?

Read the text and try the
questions.

% What are the Tirst two steps
in the Hicre Language lab
programsad learning?

1. Listen to the casseite tapes.
2. Read the text and try the
guestion.

dhat is the last of the three
steps in the Micro Language Lab
programeed learning?

The third step is to learn the
amswers to the guestions without
referring to the text.

Vhat are the three steps in
the Bicro Language Lab
prograsmed learning?

i. Listen to the cassette tapes.
2. Read the text amd try the
guestions. 3. Learn the answers
to all the guestionms.

So that's how it goes.

2 Lesson 1

again. Assembly language takes concentration and the
elimination of distractions.

There are also some things you will need for this course.
You can’t get along without an E ditor/Assembler, so please
don’t try. Get ome. Radio Shack calls this program
EDTASM+, and it’s available in a ROMpack cartridge for
all the Color Computers. It contains an Editor/Assembler
system, which Fll help you learn to use, a rundown of the
6809 instructions, and other pertinent information. All the
sample programs are compatible with EDTASM-.

You will also need a machine-language software monitor.
That's part of the EDTASM+ cartridge, but if as you
progress you feel you need more features, then there are
several excellent commercial programs available.

Blank cassettes are necessary only for saving original
programs as you write them. You won’t need blanks with
this package to do any of the demonstration programs since
everything is typed for you. But as you develop software,
you may find that you like what you've done enough to keep
it. For this you will need blank tapes.

Keep your Extended Color :BASIC manual handy for
reference, have paper and pencil ready, and take out the
enclosed MC6809E data booklet and leave it nearby.

Finally, you will soon find that unplugging cables from your
cassette player is no fun. Both my voice and all the
programs are recorded together on these cassettes.
Enclosed in this package are plans for a simple switch box
so you. can flip between listening to me and loading
programs into your computer.

Support materials:

EDTASM+ and manual
Color Computer Technical Manual

Technical Manual Supplement
MC6809E data booklet {included)
MC6821 data booklet (included)
MC6847 data booklet (included)
MC 6883 data booklet (included)

RS Cat. No. 26-3250
RS Cat. No. 26-3193

RS Parts No. 8749420
Motorola DS9846-R1

Motorola DS9435-R3
Motorola DS9823
Motorola ADI-595R1

Now I want to teil vou what you will be learning in this
course. You will discover that assembly language is nothing
like BASIC, but also that there are real advantages and
disadvantages to using either one on the computer. You will
learn binary and hexadecimal number systems, why they
are needed at all, the ASCII codes, the job of the
microprocessor, its architecture and timing, data flow, a
little about how hardware relates to all of this, and lots of
jargon. There will be lessons on memory maps, CPU
control, input and output techniques, instruction sets,
operation codes, instruction names, the inside and outside
of the processor's world, and more jargon. Lots of
demonstration programs will be provided, and in trying
them you will learn how to use machine language monitors,
editors, assemblers, and debugging techniques. Midway
through the course, you will be learning all the different
types of assembly language commands and their operation,
how to use some subroutines already written for you in
BASIC, the pitfalls of depending on that option, and more
jargon. By the end of these tapes, you will be writing your
own keyboard and screen subroutines, hopscotching data
through memory, doing graphics and sound, and
interfacing fast machine language with the simplicity of
BASIC. And, of course, you'll be able to intimidate your
friends with all the jargon you will use with such ease.

So now take some time to relax, clear your mind, and get set
to begin learning 6809 assembly language programming.
By the way, Claire is here to tell you exactly when to turn
this tape on and off, when to load programs, and where to
look in your booklet for your next instructions.

Let's get started. I've already said that the
microprocessor’s language is not BASIC. So what is it?
Theoretically, that answer is simple. The microprocessor’s
language — the machine’s language — is a set of binary
signals which causes predictable electronic events to take
place within a microprocesser and in relationship to its
external memory, events which can be combined and
expanded into control signals, mathematical calculations,
video displays, and high-level languages like BASIC
itself.

However, I'm not sure this definition is very a useful start.
Let me try it from a different angle. Imagine your car is a
computer. Youunlock the door, openit, sit down, puton the
seat belt, insert the key, start the ignition, release the
brake, put the car in gear, let up on the clutch, step on the
accelerator, turn the wheel, and off you go. That’s
BASIC.

Machine language takes you inside. You unlock the door by
inserting a key whose ridges lift tumblers to specific
heights, enabling a cylinder to turn inside a shell, releasing
certain mechanical barriers. Open the door by pressing a
button which engages some levers, slides and springs,
allowing the door to be pulled out on hinges. The seat belt
unrolls from a spring-loaded coil, perhaps turning off a
small switch as it is pressed into a latch. Another key is for

Learning the

Machine Language

What is the first thing you
will discover in this rourse?

That asseasbly
nothing like BRSIC.

language is

Neme tihree obther Whings you
will laarn in this cowrse (there
are several answers to this
guestion)?

Nuwber systeas; architecture and
timing; data flow ... or

Pomory maps; instruction seis:
operation codes ... o

Eraphics; sound; jargom.

% fgain, the first thing you
will learn in this course is...

...that assembly lamguage is
nothing like BRSIC.

% When you hear Claire's voice,
she will tell you one of three
things. What is the first one?

When to turn the tape on and
off.

Claire will tell you when to
turn the taoe on and off. What
is ancther thing she may tell

you?
khen to load programs,

Claire will tell you when to
turn the tape on and off and
when to load programs. What
else w3y she tell you?

Where to look in your book for
your instructions,

& What is amother name for the
nicroprocessor's language?

frother name
Kicroprocessor!s
pachine language.

for the
langeage is

How is knowing BASIC like
driving a car?

Because both are simple to use
but cause complex operations
inside a machire.

Memory Map

eihat do you call the
description of how the
cosputer!s desigeers have
arranged its memory?

f wemory ®ap.

¢ How many characters of mesory
does the norsal display screen
usa?

312 characters.

& At whst semory location doss
the normal display screem begin
on the Color Computer?

#t wemory lorcation 1824,

% How many memory locations are
there in the Color Computer?

There are 65,336 memory
locations i the Color
Computer.

¢ What is the arrangesent of

these meaory locations called?

The mewory map.

ihere does the normal display
screen: begin in the wemory map?

At location 1024,

% dhere does the norsmal display
screen end in the sewory map?

ft location 1535

% How sany mesory locations doss
the normal Color Computer
display screen use?

The screen uses 512 locations.

& How many sesory locations are
there aliogether in the Color

Cosputer mesory map?

There are 65,336 locations in
the memory Bap.

What is the nusber of the
first wemory location?

1t is number 8 (zerol.

4 Lesson 1

another set of tumblers which releases a clamp on the
steering wheel and permits electrical current to flow
through engine components. Turning the key further sends
electricity to an electromagnet, pulling a starter motor into
position, rotating the starter motor, spitting high voltage
through rotors, wires and spark plugs in a very precise
order, sucking gasoline and air into engine cavities,
consequently igniting the gasoline and air mixture, pushing
pistons which, through mechanical linkages, rotate the
engine’s crankshaft. The rotationalso activates a generator
which, combined with those explosions, causes a self-
sustaining repetition. Electrical and monitoring circuits
are activated. You release the key and prepare to put the
car in gear.

By now you get the idea. Getting into a car and driving away
is a simple task for a modern American. Yet the number of
machine-level activities that take place in that short span is
enormous. When you enter “PRINT 3 + 4”7 and BASIC
responds “7”, that simple action represents an equally
astounding number of machine-level activities: checking
the entire keyboard for your typing, displaying your typing
in the correct screen position, interpreting your commands
and checking them for correctness, calculating the results,
displaying the results, and returning for your next input.
That's a summary of the thousands of steps involved.
Machine language is working for you at all times.

Where is the machine language? How do you get to it? And
how does it work? Some folks tell me that the “dot on the
screen” example is shopworn. Well, get ready. Here it is
again. For me, an intellectual understanding of a concept is
seldom as effective as seeing or hearing something
concrete. Throughout this course, visual and sonic
examples will be used frequently — so you know you've
“done something”’. So, putting a dot on the screen is the
place to start.

To put that dot on the screen, you have to know where the
screen is. The “where” is what’s known as the computer’s
memory map. This map is a description of how the
computer’s designers have arranged its memory. I'll talk a
great deal about memory maps later in this course, but for
the moment let me tell you that the normal Color Computer
screen occupies a block of memory 512 characters long
beginning at memory location 1024 and running through
memory location 1535. That’s where it lies in the overall
map of 65,536 memory locations.

So when you ask BASIC to PRINT on the screen,
evaluations are made to determine the exact screen
location that is available, and the information is
subsequently placed in screen memory for you to see and
read. We can emulate this process. Turn your computer on,
and when “OK” appears, type POKE 1024,110. (Repeat)
Press ENTER. Your screen should show a black dot in the
upper left hand corner — an ordinary period, actually. You
could just as easily PRINT this from BASIC. But now try
this. Type POKE 1024,46 (repeat), and press ENTER.

e5.5%

Now there’s a black box with a white dot — a reverse-video
period. There’s nothing you can PRINT from BASIC to
produce that, because it’s one of BASIC’s non-printable
codes.

Simple as that seems, this example represents just one of
the hundreds of capabilities that machine language offers.
In fact, there are 32 characters BASIC doesn’t let you see.
Have a look in this next example.

Program #1, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLCAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ CLS
2@ PRINT"EASIC'S CHARACTER SET:"
32 FOR X = @ TO 1&7

4@ PRINT CHR$(X):

5@ NEXT

6@ PRINT:PRINT"THE WHOLE THING:"
7@ FOR X = @ TO 187

8@ POKE 1216+X, X
9@ NEXT

10@ PRINTE448,"";

Run this program. You will see the 96 numbers, letters and
symbols that BASIC can print. Below them you will see all
128 numbers, letters and symbols that your computer
actually has available.

To summarize this program: BASIC prints its available
characters, whereas the POKE statement manipulates
memory to contain exactly what you wish.

The first advantage of machine language, then, wiil be to
give you access to everything your computer has built into
it, with no exceptions. Before I turn to another advantage,
you should note now that the two sets of characters in the
previous example are not displayed in the same order. I'll
explain why later.

Displaying Characters

% Can you PRINT a reverse-video
period on the scveen using
BASIC?

o, you can't PRINT a

reverse-video period,

What BASIC comwend do you use
tc display a reverse-videc
pariod?

POKE.

What does POME do?

FOKE places a valuve directly in
BENOrY.

¥ How many characters can BASIC
ot display using PRINT?

3 characters camnot be
displayed with PRINT.

% How many characters are
available in the Color

Computer?
128 characters are available.

What comsand can display all
126 characters?

PKE.

t How does it display all 128
characters?

By directly wanipulating display
—nory.

*#khat is the arramgmeent of
wenory lovations called?

The mesory sap.

t dhere dees the normal Color
Computer dispiay screen start in
this mewory map?

At location 1024,

#What is the comand for
displaying vaiee #i1] at the
first location in display
weory?

POKE 1624, 111

Learning the éSéa(::,5> 5

Printing and POKEing

What is the purpose of program
#2?

To fill the screen with a
display 512 identical
characters.

¥hat are the four wsays this
program fills the screen with
characters?

By PRINTing characters; by
PRINTing stringsy by POKEing
values; by using machine
language.

6 Lesson 1

Program #2, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (§) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ CLS
2@ INPUT"CHARACTER" ; A%

32 PRINT“PRINTING..."

42 GOSUBR 440

5@ CLS : GOSUR 448 : TIMER = @
6@ FOR X = 1 TO S11

7@ PRINT A%:

8@ NEXT

9@ A = TIMER : GOSUR 44@

100 GOSUR 460

110 GOSUER 44@ : CLS

12@¢ PRINT"PRINTING STRINGS..."
130 GOSUR 44@ : CLS : TIMER = @
140 FOR X = 1 TD 15

15@ PRINT STRINGS (38, A$) 3

16@ NEXT

172 PRINT STRING$(31,A%);

18@ A = TIMER : GOSUB 440

19@ GOSUB 46@

220 GOSUR 440

c2l@d CLG

228 PRINT"POKING CHARACTERS..."
230 A = ASC(A%)

242 GOSUE 44@ : CLS : TIMER = @
25@¢ FOR X = @ TD 511

Z6B POKE 1084+X,A

27@ NEXT

280 A = TIMER : GDSUE 44@

290 GOSUB46D

300 GOSUR 44@

31@ CLS

320 PRINT*MARCHINE LANGUAGE..."
330 DATA ED, B3, ED, BE, @4, ¢, E7, 8@, 8C, 06, @0, 26, F9, 39
340 FOR X = 1600@ TO 16@13

35@ READ B$: A = VAL ("EH"+E$)
36@ POKE X,A

370 DEFUSR@=16000

38@ NEXT : TIMER = @

3%@ A = USR@(ASC(A%))

400 A = TIMER : GOSUE 44@

41@ GOSUB46D

420 BOSUE 440

433 END

440 FOR N = 1 TO S@@ : NEXT
45@ RETURN

46@ CLS :PRINT"TIMER READS"A
478 GOSUB44@

48@ RETURN

Welcome back. The program demonstrates the speed of
6809 assembly language. Its purpose is simply to fill the
screen with 512 identical characters, which can be done in
at least four ways: by printing 512 characters through
BASIC, by printing strings of characters, by POKEing 512
characters from BASIC directly into screen memory, and
by handing control over to a 6809 machine language
program. RUN this program now.

1% KE 65478 %
1 POKE. (5479, &
38 &5 10O

\\lil//l/[f{

-

\

First, enter any uppercase letier from A to Z you wish
displayed. Observe the BASIC printing technique. Notice
the string printing method, which is quite fast. Now watch
the BASIC POKEing technique. And finally, the machine
language routine seems instantaneous.

Now there are three important things to notice. The first is
the speed of the machine language program; don’t miss that
final display. Run the program again. This time, enter a
number or punctuation mark as the character to be printed
instead of a letter. Observe carefully as the printing and
string printing finish that the LAST (512th) letter is
missing. In BASIC, if you print in that 512th screen
position, the screen automaticaily scrolls to the next line.
But characrers can be POKEd anywhere in memory, even
inthe last screen space. The machine language programisa
fast way of doing that POKEing.

Yet there’s something else. This time, the characters
printed are not the same as those POKEd into memory or
displayed by the machine language program. Recall the
first program in this lesson — the characters weren't in the
same order when printed and POKEd into memory. The
reasonisthe hardware chosen to perform the video display.
This hardware is limited to displaying only 64 characters —
numbers, symbols, and uppercase letters. The Color
Computer uses reverse (also called inverted) letters to
represent lowercase. The BASIC software knows how to
switch all these around to get the standard order — the
order of ASCII, the American Standard Code for
Information Interchange. This first, short machine
language program doesn’t do that. But it can be expanded.
We'll return to that later.

The final lines of the BASIC program contain data
statements and other commands which set up and execute
a machine language program. Although you may examine
these now, I'll hold back the detailed explanation of these
for the moment.

So far, 've only played around with screen memory hy
putting some things on it. Now enter a three-line program;
T'll read it to you. Line 10. POKE 65478,0. Line 20. POKE
65479,0. Line 30. GOTO 10. I'li repeat that; you can glance
in the manual and check Program #3 to double-check.

1@ POME&SES478,0
Z@ POKESS479, @
o GOTO1@

RUN this program. What’s that? It's delving into the heart
of the computer, manipulating its control signals. It’s video
screen position information masquerading as computer
memory. And that’s the subject of the next lesson.

Screen Memory

What domc ASCI] mean?

fmerican Standard Code for
Informstion Interchange.

% How does the Color Computer
represant lowercase letters?

Lowercase is represented by
revevse video {white on black).

* Qe the internzl (herdware)
Color Computer characters in
ASCIL order?

Ho.

+ Does PRINT display the
characters in HECII order?

Yes.

#Does POHE display the

characters in ABCIT order?
Yo,

t Why doss PRINT display the
characters in ASCII order?

Because the BRBIC software
switches thea.

What BRSIC command is used to
show the internal order of the
characters?

POKE.

What does POKE do?

It places a value into wemory.

% Uhat locations in the mewory
map does the normal Color
Computer display screen use?
From locations 1824 to 1535,

% Of the four sethods in Program
2 — PRINTiag characters,
PRINTing strings, POMEing, amd
wachine language — which is
fastest?

Hachine languape is the fastest
ﬁhwl

Learning the 6&)9 7

Lesson 1

EQE LY

7k

2L
315 o
NIy ge¢
zzs5" 135
£

Welcome to the subject that strikes unreasoning terror in
the heart of every programming novice — numbers and
number systems. There are many opinions about computer
number systems. Here’s mine: if you don’t learn them,
you’ll end up hacking your way through assembly language
programming. You'll never feel comfortable or competent
doing it.

That said, T'll start by telling you that I'm no
mathematician. Numbers make me cringe. Yet binary and
hexadecimal computer representation are really easy.
Partly that’s because I found that, when ordinary sheep
failed me, counting backwards hexadecimal sheep jumping
a fence put me to sleep before I reached zero. I'm not
making it up.

Seriously, computer number systems have been made
frightening by obscure use of language and knot-headed
programmers. In truth, we live and live well in a world of
non-decimal number systems. Here’s a short list:

12 inches to a foot, 3 feet to a yard

5280 feet to a mile

32 degrees is freezing, 212 degrees is boiling
60 minutes in a hour, 24 hours in a day

7 days in a week, 52 weeks in a year

365 days in a year, but 360 degrees in a circle
3 teaspoons to a tablespoon, 4 quarts to a
gallon

30 days hath September, April, June, and so
forth

There are dozens, acres, ounces and hundreds of other
examples. All are the daily measurements of our bread and
butter, our life and time. All are irregular ways of
numbering, but few confuse us. Chances are you can
identify every one of these groups of numbers:

727,737, and 747 98.6
33,45 and 78 3.1416

Learning the 6809

You have finished the first
lesson. The programsed learning
section of that lesson was
simple and repetitive; all of
the programmed learning is
somewhat repetitive, but as you
po, the pace will begin to
quicken. flso, the questions in
this lesson will assume you know
the material in the first
lesson. Much of the groundwork
in assmmbly language is rote
learning, Just like memorizing
times tables, so keep up with
the programeed learning
questions.,

% Different number systess are
our heritage. How many cards in
a poker deck? How many weeks in
3 year?

&l

% How many cards in a suit? How
many weeks in 3 quarter?

‘.

* How many spots in a card deck?
How many days in a year?

3635,

* How many face cards in a deck?
How many months in a year?

2.

Sherlock Holmes

t s the decimal systew used for
computer operations?

N

* Why aren't decimal nushers

used for computer number
systems?
Berause the activities the

numbers represent would be
clumsy or make little semse in
decimal,

+ What number systes is used for
romputers?

The binary systes.

How wany

represented by the binary
systew?

2 rawbers.

What are the names of the two
rnumbers represented by the
binary system.

The bimary numbers are @ and i.

* Name another pair of
conditions that can be
represented by the birary
system.

Or and off.

* Name some other oppesite pairs
of conditions that wight be
reoresented by the binary system
{there are many correct answers
to this question).

High ard low; in and out;
formard and backward; ved and
green; and %o forth.

* Was Dr. datson a wedical
doctor?

Yes. He wis a peneral
practitioner. This question in
no way relates to the discussion
of number systems.

10 Lesson 2

nusbers can be .

What I guess came to mind were airplanes, records, normal
body temperature, and pi. My point is that this is a
conceptual issue. These are not numbers, they're
representations of something useful in real life. And
computer numbers are conceptual, too. The metric svstem
is official inthe U.S., but how much use does it get? Perhaps
it toois a conceptual issue. I know how long a centimeter is,
but can’t convert from feet to meters. Same with a liter.
Now that soft drinks come in liter bottles, I finally know
what one is. Never could make a mathematical conversion
of it, though. I can tell an acre, even though I don’t know its
actual measurement. In other words, once a number is
represented by something in “real life”, so to speak, I can
make sense of it.

Basically that’s what computer number systems are all
about — they represent activities that are clumsy or make
little sense when described by “regular” decimal
numbers.

Keep that in mind. By now you're probably familiar with
that old standard, the light-switch analogy. Computers, it’s
been said, operate using electronic switches that are either
on or off, just like light switches. That’s two conditions —
the binary system, it’s called. On or off.

Such a description is true as far as it goes, but it leaves out a
lot. To cast a different light on the binary system, I've
enlisted the help of two old friends, Sherlock Helmes and
Doctor Watson, who will discover some clues in this slightly
rewritten scene . . .

Watson: . . . but it’s just someone turning the lamps on,
Holmes. It’s past dusk, after all.

Holmes: Ah, yes, Watson, but why would someone light a
lamp and extinguish it so quickly? And move from room to
room? Eh, Watson?

Watson: Perhaps they’re looking for something they can’t
find.

Holmes: Or perhaps they’re signaling someone. A cipher of
some kind, I would say.

Watson: With lamps in five windows? Nonsense,
Holmes!

Holmes: Just copy this down, Watson. I'll read starting
from the uppermost window. Lamp on, lamp off, lamp on,
lamp on. . .

Watson: Slow down, Holmes.

Holmes: Keep at it, Watson, they won't stop for your
fingers. Lamp off. They're changing now. Again, from the

vy

o

oouy

SINAL %/
SR %7
Sl %
SIhAL 4

Cre T

LINGG

uppermost. Off, on, off, off, on. .. I've got it, Watson! These
are letters of the alphabet. Five windows create 32
combinations, enough for all the letters of the alphabet.

Watson: Amazing, Holmes!

Holmes: You don’t need to write down the lamps now,
Watson. I think I can read the message. S-E - E M-
E A -T... See me at the August Lion Tavern at 6
o’clock. That’s it! We have just five minutes. Come on,
Watson!. . . .

What Holmes discovered, of course, was that by using the
most basic information — a simple pattern of lamps lit or
extinguished — a complete message might be sent and
received. Morse formalized that with his telegraph code. In
this case, Holmes perceived quickly and correctly that with
five lamps, 32 combinations were possible by rearranging
the pattern of lamps lit and darkened.

You will find that computers are really quite simple-
minded devices. You're dealing with nothing more than a
vast but microscopic nest of electronic switches. There’sno
intelligence involved — just an impulse here, an impulse
there, all moving very fast. For reasons that have more to do
with manufacturing economy than anything else, the
decision to use the on-off switch was chosen over
something more familiar like a decimal type counter.
Programming might have been much easier otherwise. But,
cheap as it was to manufacture, the on-off idea limited each
meaningful computer signal to those two conditions alone.
For more conditions — larger numbers, that is — more on-
off signals are needed. Groups of signals, all working
simultaneously, like Holmes’s five lamps.

Everything in computers began to take on the color of two
choices, base 2, the binary system. Data was parceled out in
base 2, and grouped in powers of 2. The first
microprocessor device used four simultaneous signals for
transmission of data. The 6809 uses eight signal lines.
Newer, more sophisticated computers use 16 or more
concurrent on-off signals.

You can probably guess I'm taking you easy into this. But
stay with me. If you think back to Holmes’s discovery, you’ll
remember that the operant concept was not the number,
but rather the pattern of lamps. The patterns represented
codes for letters — an inspired idea from the time Morse
developed his telegraph code to the present day American
Standard Code for Information Interchange (ASCII).

In computers, these are patterns of binary signals, thought
of as binary numbers or binary digits. Binary digit is
conveniently abbreviated “bit”. So when the 6809 is called
an 8-bit processor, that means that all its information is
created from the combinations of eight binary digits.
Here’s the grabber: no matter what the information

Learning the

Binary System
How many combinations did
Holmes figure could be made from
five lawps?
32 combinations.

How many lamps would produce
only 16 different patterns?

Four lamps.

& How nany different
combinations would Holmes have
discovered if there were six
lanps?

64 combinations.
¥ How mary different

combinations would Holmes have
caleulated from eight lamps?

256 comsbinations.

t Write down the powers of 2
from 2¢1 to 248,

2, 4, B, 16, 32, b, 128, 256

% What nusber system is used in
computers?

The binary system.

t How wany different nusbers can
be represented by the binary
systemy, and what are they?

2 numbers; they are @ and 1.

& How nany different
combinations can be forsed from
eight onor—off lamps? From
gight one-or-2ero binary
digits?

Both answers are the same: 256
combinations,

* What does hit mean?

Bit means binary digit.

How many binary digits (bits)
are used by the 6889 processor
to represent inforsation?

Eight bits.

6809

Hexidecimal

How nany different
coshinations can be formed from
gight bits?

296 combinations.

How many different
vombinations of binary digits
can the 6889 processor produce
from its 8 bits?

256 combinations.

How does the 6889 processor
distinguish letters, cossands,
display, sound and other
purposes of the 256 combinations
of 8 binary digits?

By the context in which those
digits are presented,

What number system is used in
computers?

The binary number system is used
in coaputers.

%+ What counting system is used
for clarity in discussing
computer numbers?

The hexadecimal counting systes
is used for clarity.

How many numbers are
represented by the hexadecimal
rounting sysiem?

16 numbers are represented by
the hexadecimal counting
system.

represents — letters, numbers, commands, display, sound,
whatever — it is formed by some pattern of those eight
binary digits, formed from those eight bits. The
microprocessor, the computer’s heart, can know the
difference only by the context in which those digits are
presented.

If that seems far-fetched, consider that there are only 26
letters in the alphabet, 10 numerical symbols, and a dozen
or so punctuation marks. Those letters, in specific
combinations and contexts, make up the half-million or so
words in the English language. Those same letters,
combined into words and melded through punctuation into
sentences and paragraphs, can describe the entire known
history of humanity with multiple levels of nuance, politics,
ot poetry. Quite a bit from a simple 26-letter code.

Atlastit’s time to get down to specifics, and deal with those
numerical symbols, The trick is for you to gain an
appreciation of the computer number system that’s used
exclusively for clarity. It’s called hexadecimal. Base 16.
Don’t run for the Maalox. Keep in mind that we're not
talking about counting-type numbers here, but simply
representations, symbolic abstractions.

First, there’s a program to get up and running,.

Program #4, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find(F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ CLS:L=164

Z PRINT"CONVERSION: " :PRINTYFROM DECIMAL 7O EINARY"
3@ FORB=1TOS

4@ PRINT: INPUT"NUMBER @ TO 235X

S@ IFXY (QDRX) ESSTHENPRINT"OUT OF RANGE" :GOSURZ9@:GOTO4Q

6@ GOsUB3zR

7@ PRINTC:E:G:;IsKiM:0:0:

8@ NEXT

3@ PRINT:INPUTY (ENTER) TO CONTINUE" 1A%
1@ CL.5

11@ PRINT:PRINT"DECIMAL AND BINARY DO NOT EBEAR A DISTINCT VISUA

L RELATIONSHIP:"

12@ FORX=@TOZES

130 GOSURSIE@A

142 ARINTEIS6. X3 s PRINTEZEE, " (————DECIMAL"
15@ PRINTC:E:G:sIsHiM:0;0;

16@ NEXT

i17@ CLS

CLEAR VISUAL REL
PATTERNS. EACH
HEXADECIMAL SYME

18@ PRINT:PRINT"HEXADECIMAL AND RIMNARY SHOW A
ATICGNSHIP., THE FOUR BRINRRY DIGITS CREATE 16
BINARY PRTTERN IS IDENTIFIED RY A UNIGUE

OL FROM @ 7O F."

19@ FORX=@T025S

200 X$=HEX$ (X)

1@ IFLEN(X$)=1THENX$="2"+X%$

22@ PRINTEZEQ@, "...."LEFT®(X$,1)" ... een-c "RIGHTS(X$, 10", ..., "
&£3a GOSUR3ze
24@ PRINT® "CiE3G:TsKMs0:0R

250 PRIMT" v eseawuas worvwenwven "

12 Lesson 2

0600
000/

oo/
O /00
oro/
©//70
o/

/000
/00/
/0/0
707/

/700
770/
/770
17777

MY QW D> 0T URw NSO

26@ NEXT

27@ FORX=1TO3@@&:NEXT

28@ 5T0R

290 FORN=1TD1@R@:NEXT:RETURN

302 X=C#128+E#B4+5#IT+I*16+KBEMRL+D¥2+Q
312 RETURN

3&2 C=INT{(X/128):D=C+*1&8

33@ E~INT{((X-D)/64) :F=Ex&4H

34@ G=INT((X-D-F)/3&) :H=G#*32

35@ I=INT{((X-D-F~-H)/16) : IJ=I*16

360 K=INT((X-D-F~-H-J)/8) :L=K*8

37@ M=INT ((X-D-F—-H-J-L) /4) :N=Mx4
38@ O0=INT ({X~D=-F~H~J—L—-N)/2) : P=0#Z
39@ G=INT (X-D-F—-H-J~L-N-P)

40@ RETURN

Tve been talking about symbols, relationships and
legibility. 'm also talking about memorizing patterns for
instant recognition. You’re about to run a program which
will show all 256 rearrangements of eight binary digits,
represented as a string of ones and zeros. Run this program
now. Enter a number from 0 to 255, and check out the
binary equivalent printed below. Enter ancther number,
and look. Enter three more numbers, and examine the
binary equivalents. Chances are, what you see is not very
useful. Hit KENTER>. The decimal values from 0 to 2565
will be displayed in order, together with their binary
equivalents.

The decimal numbers count up nicely from 0 to 255, and
the binary numbers also follow a regular pattern. That
binary counting-up pattern probably isn’t familiar to you
yet, but there are lots of ways of understanding it. For
example, as you watch, notice that the right-hand digit
alternates quickly between 1 and 0. Its neighbor’s
alternation takes twice as long, and its neighbor’s
alternation in turn takes twice as long as that. There’s that
binary, base 2 system working again. The binary counting is
useful to watch; try to get familiar with it.

When the decimal counting is finished, the program will
show you a much easier system. Mentally break that eight-
bit binary group into two halves. Remembering Sherlock
Holmes’ discovery, you can see that the four binary digits in
each group can be rearranged 16 different ways. Instead of
trying to recall lines of ones and zeros, though, each
arrangement can be identified with a single, unique
character. The arrangement 0000 can be identified as 0. 1
can be identified as 1. 0010 becomes 2, 0011 becomes 3,
0100 becomes 4, on up to 1001, which is called 9. 1010 is
labeled A, 1011 is labeled B, 1100 is labeled C, 1101 is D,
1110is E, and 1111 is F.

As you watch the screen, you will notice that a separate
symbol — a hexadecimal symbol — is used for each half of
the 8-bit group. That gives you an easy-to-handle two-digit
reference for each long binary number from 00000000 to
11111111,

The advantage of this method is very real. By knowing a
binary number, you can almost instantanecusly know the
hexadecimal equivalent. By knowing the hexadecimal

Learning the

Counting Hex

t If you are working with eight
binary digits, what is the
binary equivalent of decimal
nusber 17

000e: is the B-bit binary
equivalent of the decimal number
1.

t If you are working with eight
binmary digits, what is the
binary equivalent of decimal
nusber 2557

11111111 is the 8-bit equivalent
of decimal mumber 235.

& What is the hexadecisal symbol
for decimal mumber 17

1 is the hexadecimal symbol for
decimal number 1.

t What decimal number is
vepresented by binary number
o0001111?

O0R1111 is the decimal nusber
18,

* What hexadecimal nusber
represents binary nusber $009?

Hexadecimal nusber 8 represents
binary 0088.

¥ What hexadecimal nuaber
represents binary numsber 11117

Hexadecimal number F represents
binary 1111.

t dhat hexadecimal nusber
represents binary nusber
00011112

Hexadecisal number &F represents
binary 20081111,

Count the bimary numbers from
o008 to 1111,

0000, 0001, 0810, @911, 0169,
8101, 6118, 8111, 1089, 1001,
1010, 111, 1108, 1181, 1118,
111

6809 =

Reading Hex

%+ Count the hexadecimal numbers
from @ to F.

9, 1,2 3,4 56 7, 8 9, 4
BC D EF

Count Dbackwards in hexa-
decimal mmbers from F to @.

F'l E!’ ni‘ ci Bi“'996’7! 6’ 5'
4 3,2, 1,8

What binary number is
represented by the hexadecimal
nusber C?

Hexadecimal C is binary 1108,

+ What is the shorthand word for
hexadecisal?

The shorthand word for
hexadecimal is hex.

t Count aloud quickly fros hex
28 o hex 30.

Two-zero, two—one, two-two, two—
three, two—four, two-five, two-
six, two-seven, twoeight, two-
nine, two-f, tweB; two{, two-
Iy two—E, twoFf, three-zero.

4+ What symbol is used to
indicate a hex number?

The dollar sign.

What is the hexadecimal number
for bipary 1109?

The hexadecimal number is $C.

Count aloud quickly, backwards
in hex from $FF to $EB,

FF, FE, FD, FC, FB, FA, F9, F8,
F7, FB, F5, FA, F3, F2, F1, F9,
EF, EE, EI, EC, EB, ER, E9, EB.

What is the binary number for
hexaderimal $AR?

Hexadecimal A is binary 1018, so
hex AR must be 10181818.

14 Lesson 2

representation, you can get at the binary equivalent at any
time. Remember, these microprocessors work in a binary
world. Knowing that world is essential for you as the
programmer to call the shots.

How can you learn the hexadecimal numbers? Memorize
them. Just like the times tables in elementary school.
Count sheep, forwards and backwards. Go back to this
program and RUN170. Read the numbers aloud. By the
way, hexadecimal numbers — you’ll just call them hex after
a while — are read a little different from decimal numbers.
If there’s aleading zero, for example, you hang onto it. Like
this:

0001 (not just “one”) 02 03 04 05 06 07 08 09 OA OB OC GD
OEOF 10 (not *“ten”) 11 (not “eleven”) 121314151617 18
19 1A 1B 1C 1D 1E 1F 20 (not “twenty”) and so on.
Remember than when you get up to 9A 9B 9C 9D 9E 9F, the
next hex number is AO. It goes all the way up to FF.

Another convention for hexadecimal numbers is their
written form. The letters are always uppercase, and in
order to distinguish hex from decimal, it’s common practice
to put a dollar sign in front of a hexadecimal number.

You should also try to learn your hex numbers backwards.
Assembly language has certain kinds of program activities
that move backwards, and being able to make an accurate
backward count — FF FE FD FC FB FAFQ F8 etc. — will ease
this process.

As far as converting from decimal to hex and vice versa,
you’ll do it occasionally. Use a chart, a special calculator
like the Texas Instruments programmer, or a formula.
When you learn to use the editor/assembler/debugger
programs, much of this conversion is done by the assembler
itself. For the moment, learn to recognize the four-bit
binary patterns and their hex equivalents. In fact, you
might take a break from this tape right now to practice
binary and hexadecimal patterns.

Hexadecimal numbers will be used for the remainder of this
series. Please practice the hexadecimal numbers patterns and
return to the tape when you can recognize the four-bit binary
patterns and their hexadecimai equivalents.

N
o (]
00Co oo/
N [——
Qo /
/7000 AOCo
e S’
o
/700 [@wary
N A
[/
/177 17277
e~
F F

HEX 76 =
O/l 0110

/00
FF
FE
FD
FC
FB
FA
F?
=
E7
Fb
F5

000 oQo/

a

oo 000/

Z

o/0l 1010

7

ol 1ole

Since this is a lesson about numbers and codes, I'd like to
introduce another essential preliminary to diving into
assembly language programming, the ASCII codes. ASCII
— the American Standard Code for Information
Interchange — is a set of 128 numerical codes to represent
letters, numbers, symbols, punctuation, and special
control functions,

T'll talk hex. Punctuation marks start at $20, numbers at
$30. $40 points to uppercase letters, $60 starts lowercase.
Simple? Only in hex. Ever try to convert from uppercase to
lowercase in BASIC? It can be tricky. But in binary, it’s a
cinch. Grab paper and pencil

Write down hexadecimal 41, and across from it write its
binary equivalent, 0100 0001. This is the uppercase letter
A. On the next line, write down hex 61, and across from it
the binary, 0110 0001. This is lowercase a. Now write hex
SA, and its binary, 0101 1010; this is uppercase Z.
Lowercase z is 7A, binary 0111 1010.

Sit back and look at these numbers. The hex numbers seem
related enough, but the real clue lies in the binary. In
referring to binary numbers, the rightmost digit is called bit
zero. Find bit five in both upper and lowercase A; it’s third
from the left. Notice that bit five is the only digit that’s
different in upper and lower case. Same with letter Z. Bit
five clearly distinguishes uppercase from lowercase. In
decimal, upper and lowercase Z are 90 and 122
respectively. There’s no visible relationship there. But bit
five! Just one digit makes all the difference. ASCII looks
illogical in decimal, not binary.

I'll talk more about ASCII codes, especially those from $00
to $1F — the control codes that ring bells, backspace, line
and form feed, carriage return, and perform special
activities like clearing the screen. In the meantime, there’s
work for you to do.

For your assignment: learn to count in hexadecimal,
explore all the ASCII codes in binary, and learn to read the
ASCII bit table in the back of your documentation package.
Review this lesson until you are familiar and comfortable
with binary and hexadecimal. Please continue with these
lessons only when you have reviewed the number systems
thoroughly.

ASCII codes

+ What does ASCII stand for?

ASCII stands for American
Standard Code for Inforwation
Interchange.

Where are uppercase letters
found in the ASCII code? Bive
the answer in hexadecimal.

The uppercase ASCII codes are
$48 to 5.

% there are the lowercase
letters found in the ASCI1 code?
Give the answer in hexadecimal.

The lowercase ASCI] codes are
$68 to $7F.

& How are the rightmost and
leftwost bits numbered in a
group of eight binary digits?

The rightmost is bit @, the
leftmost is bit 7,

+ What binary digit
distinguishes uppercase from
lowercase characters in the
ASCII code?

Bit 5 distinguishes uppercase
ASCIT from lowercase ASCII.

How is ASCII pronounced?
RSCIT is pronounced ASSkey.

#The ASCI] code for the
uppercase letter E is
hexadecimal $43. What are the
bimary and hexadecimal values
for both uppercase amd lowercase
letter E?

Uppercase E is $45, binary 8103
aiei, Lowercase E is $85,
binary 0110 @181.

+ What ASCI] codes are located
from hexadecimal $8@ to $1F?

The machine comtrol codes are
found from $8@ to $iF.

Learning the 6809 15

16 Lesson 2

Hello again. In this third lesson, we reach a critical point. ..
the point of explaining the whys and wherefores of the 6809
microprocessor. You should have spent some serious time
getting familiar and comfortable with binary and
hexadecimal counting, as well as with the arrangement of
ASCII characters. The workbook provides some exercises
and self-tests; please complete them before continuing
with this lesson. Especially if you're a first-timer to
assembly language, that’s very important.

There are many general ways in which microprocessors are
described and defined: they are smart circuits, they are
calculating devices, they are (as I've said) a microscopic
nest of electronic switches. Microprocessors are all of these
things and more. I'll use several terms interchangeably
throughout these lessons — processor, microprocessor (or
MPU), central processing unit {or CPU). In your Color
Computer, these all mean the same thing: the 6809
microprocessor,

Inside all microprocessors, inside all MPUs, are a number
of data holding stations called registers. More about the
term register later, but at the heart of a microprocessorisa
special calculator register, formally called an arithmetic
logic unit, or ALU. The ALU holds one binary word — that
is, a certain number of binary digits of information. I'm
talking here about the 6809 processor. It accepts datainan
eight-bit binary group, called by the tongue-in-cheek name
“byte”. The word size of the 6809’s binary data is the byte
— eight bits.

To describe it another way, the 6809 has eight wires
connected to it for data. All eight wires become “live”
simultaneously, conducting eight binary digits to the
processor. This information is one byte.

Soit’s got this arithmetic logic unit, the ALU, whichholds a
byte of data. The ALU can then perform simple
calculations with that byte of data. The calculations, which
T'll get back to in detail shortly, are: addition, subtraction,
and multiplication. Alsc, there are incrementing and

Learning the

Things pick up speed now.
There's lots of new information
coming up, so make sure you've
done all the exercises before
ending this session.

* dhat does CPU stand for?

Central Processing Unit, the
RiCTOProcessor.

What is the Central Processing
nit (CA) in the Color
Computer?

The 6809 is the Color Computer's
chu,

+ What holds the data inside the
microprocessor?

Registers hold data inside the
RiCroprocessor,

* What does ALU
does it do?

wean and what
ALU means Arithmetic Logic Unit.
The ALU performs calculations.

+ How many bits of inforsation
does the ALY hold?

The ALU holds eight bits.

% What is the computer jargon
for eight binary digits?

fi byte is computer jargon for
eight bimary digits,

6809 o

The ALU
+ What is a binary word?

R certain number of binary
digits.

t What is the word size of the
6889 microprocessor?

The 680%°s word size is eight
bits.

* Again, what is the computer
Jargon for eight bits?

Eight bits make up 2 byte.

* Name three kinds of aritheetic
the ALY perforws.

Addition, subtraction, and
sultiplication.

Nawe four kimds of logical
functions the ALU perfores.

AND, OR, NOT amd Exclusive OR.

* Nawe the three other
operations the ALU perforws.

Incresenting, decrementing, and
comparison.

% How wmany bytes can the ALU
hold for deing its work?

The ALU holds one byte.

Nawe all ten kinds of
operations the ALU can perform
on one byte.

Rddition, subtraction,
multiplication, AND, OR, NOT,
Exclusive OR, incresenting,
decresenting, amd comparison.

¥ What is the ALU called in the
6803 processor?

The ALl is called the
accumulator,

t How many accumulators are
theve in the 6889 processor?

The 6809 has two accumulators,

18 Lesson 3

decrementing, which are essentially addition or
subtraction by one. The ALU can perform logical
operations such as AND, OR, NOT, and EXclusive OR.
Finally, it can make a comparison with any other byte of
data.

Most of the processor’s hard work is done in the ALU. In
fact, the 6809 is such an advanced processor that it
contains two separate ALUs. Each one can add, subtract,
increment, decrement, compare and perform logical
operations. Together, they can be used to multiply.

The arithmetic logic units in most MPUs, in most
processors, including the 6809, have several descriptive
names. They are called accumulators. The ALU is also
called an accumulator register. Finally, the 6809’s own
PAIR of accumulators are labeled A and B. So the
arithmetic logic unit, the ALU, the accumulator, and the
accumulator register effectively mean the same thing. In
the 6809, they mean where the math is done — in A or
B.

These A and B accumulators get the information they need
by loading it. Loading: that’s the term for obtaining data.
The accumulators save the results by storing data. Load
and store. Get data, save data.

Ihave to answer several questions at once now, because the
actions that they represent are so intertwined. Here are the
questions: How does an accumulator load or store data?
Where does it load data from, and where does it store it?

I'll start with the “where”. The data the accumulator needs
might be inside the microprocessorin anotherregister. The
term register is in fact quite general. The A and B registers
of the 6809 are the arithmetic logic units, the accumulators.
But there are other registers also capable of holding
information, though these registers cannot by themselves
do any mathematical calculations with the data. Their main
purpose is to keep information handy for the
accumulators.

But the most important place the accumulator obtains its
information is from memory. Memory is a line of storage
locations outside the 6809 processor itself. Each memory
location can hold an eight-bit word, a byte.

I'll back off from that briefly to tell you how an accumulator
loads or stores data. It follows the commands of an
instruction decoder, that part of the processor which
determines the actions the processor is to take. Now here’s
where my answers get intertwined. The instruction
decoder gets its instructions from the same memory that
stores data. In other words, when the instruction decoder
gets a byte from memory that says “load something into the
accumulator”, the next byte in memory is that very
“something”. It all comes from the same line of memory.

Recall the last lesson. I said that the 256 possible

FFFE
FFFE
FFFP
‘ FFRC
FFED
PO , FFFEA
FFEG

- 3 reey

) | FFFg

GETTHS [Tereg
CHE! [FFrg

Oo0%

rearrangements of binary digits represent all the
information the processor will ever need — instructions,
numbers, ASCII characters, whatever. That’s precisely
true. I also said that it’s the context that determines what
the binarv pattern means. Context is what assembly
language programming is all about: ordering the bytes sos
that they turn into a useful program.

So far you know that the processor, the MPU, gets both its
instructions and data from memory. How does it
distinguish them? That is, how does it understand their
context?

To discover the answer, you must know that the memory
locations are each uniquely numbered, starting from zero.
These identification numbers are called addresses. How
many memory addresses a given MPU has available are
determined by the number of its address bits. In keeping
with its total logical binary nature, the 6809 has 16 address
bits. The total number of rearrangements of 16 binary
digits, from 06000 00000000 0000t0 1111 111111111111,
is 65,536. It’s what you call 64K (since a “K” in computer
terms is 1,024).

Get a pencil and paper. Breaking them into groups of four
digits, write down 0000 0000 0000 0000. That's 16 zeros.
Now, elsewhere on the paper, write down 16 ones. Also
break those into groups of four: 11141 1111 1111 1111,
Above each group of four binary digits, write its equivalent
hexadecimal symbol. For the 16 zeros, the hexadecimal
value would be: dollar sign 0090 0. Don’t forget that dollar
sign; it identifies a hex number. Also write the hex value for
16 ones: dollar sign FFFF.

What you have just written is the address range — that is,
the number of individual memory locations — available to
the 6809 processor. $0000 running through $FFFF are the
addresses of the 6809 MPU.

Memory addresses

+ What are the names of the two
accumulators in the 68897

The two accumulators are called
A and B.

#What are the ten kinds of
operations the A and B
accumalators can perforw?

Addition, subtraction,
multiplication, AND, OR, WOT,
Exclusive DR, incresenting,

decrementing, and comparison.

+ What is the terw for obtaining
data?

Loading means cbtaining data.

¥ What is the term for savimg
data?

Storing means saving data.

#What is the word size the
6889's accumulators can hold?

One byte, that is, eight bits.
* fiside from other repisters,

where do the A and B accue-
ulators get their information?

The A and B accumulators get
their inforsation from wewory.

* What is the word size of a
semory location?

Ore byte, that is, eight bits.

* How mary locations are in the
Color Computer mewory map?

65,336 wemory locations.

Describe the map size and word
size of the 6889 oprocessor's

BENCTY.

63,536 locations; each location
is one byte in size.

% There are how many bytes in
one *K*?

1824 bytes.

Learning the 6809 19

Powering up

There are how many “K" in
63,536 bytes?

“K.

What is the nusber of the
first and the last sewory
location in the Color Computer.

The first wmewory location is
mmber @; the last wesory
location is number 65,535,

How many binary digits are
needed to represent the range 6
to 65,5357

There are 65,536 possible
cosbinations of 16 bits nesded

to represent the range @ to
65, 535.

Write the number & in 16
hinary digits.

The nusber zero in binary is
G0e2 200¢ 00de 0308.

What is 0080 002 GOOS 0MIR in
hexadecimal?

00P0 200D 000C MBBB in hexa-
decimal is $0980.

% What is the nusber 65,535 in
binary digits? Hint: it is the
largest nusber that can be
written using 16 bits.

$5,535 in bimary is 1111 1111
1111 1111,

What is 1111 1111 1111 114} in
hexadecimal?

1111 1111 1438 1111 in hexa-
decimal is $FFFF,

¢ The 6309 microprocessor has a
64K mewory map. How many bytes
is BAK?

64K is 65,530 bytes (BAK times
1,824 bytes per K)

20 Lesson 3

You have just identified the 6809 processor’s address
range. Knowing now that the 6809’s addresses run from
$0000 to $FFFF, you are ready to discover how the 6809
MPU distinguishes instructions it performs from the data
it uses.

The 6809 goes through a fixed set of electronic actions
whenever the power is turned on, or whenever the reset
switch is pressed. The processor first does up its internal
housekeeping. It requests the contents of memory at
address $FFFE, and following that, it requests the contents
of memory at address $FFFF.

Follow carefully here. The two bytes loaded from memory
locations $FFFE and $FFFF are concatenated — that is,
combined end-to-end. A byte is 8 bits; two bytes end-to-
end are 16 bits. 16 bits happens to be the same size as the
6809 processor’s address. .. something that didn’t happen
by chance. In fact, those two bytes are used as the address
of the memory location containing the very first instruction
the microprocessor will follow.

I'll repeat that. When the power is turned on, the 6809
fetches the two bytes stored at memory locations $FFFE
and $FFFF. The processor concatenates them, producing a
16-bit value. That value is used as an address, and at that
address is found the first instruction 6809 must execute.

That address is put in a special 16-bit register called the
program counter. From that point on, until the power is
turned off, the program counter, called the PC, always
keeps track of the next instruction the processor is going to
follow. If the programmer has done a good job, the
computer will begin executing the thousands of
instructions that make up its language or operating
system.

I think it’s time for a summary.

I'm using microprocessor, MPU, processor, central
processing unit, and CPU interchangeably. Inside the 6809
MPU are two arithmetic logic units, the ALUs, which each
hold a single 8-bit word of data and perform simple
calculations on that byte of data. The ALUs, also called
accumulators, are identified as the A and B registers.

The registers load bytes of data from memory and store
bytes of data in memory. There are 65,536 memory
locations available to the 6809 MPU, and from them it gets
both its instructions and data. The instruction decoder
inside the MPU tells it what operations to perform in
response to an instruction byte loaded from memory. The
program counter register, the PC, keeps track of which
instructions are next in line.

If you feel comfortable with this information, please
continue with this tape. If any of it’s shaky, start this lesson
again; you might want to follow along in the text while
reviewing the lesson.

T“

g

G

1€y

ey
3
L {7 e

2
&
|

gge
[T

What I'm discussing in this lesson is the 6809's
architecture. That’s the term for the logical organization of
the processor. The water’s about to get deeper, and I'm
going to throw you in, so get ready to swim. Along with vour
documentation, there is a Motorola data booklet for the
MCB809E processor. Find the booklet, and turn to page 5.
Data booklets like these are meant for programming and
hardware professionals, so much of it will initially appear
incomprehensible. That fogginess is a trademark of data
sheets.

/e’ll be concerned with the last two paragraphs on page 4,
the first few on page 5, and most importantly Figure 5. Take
a moment to locate those.

Look first at Figure 5. So far, you've found out about the
program counter (PC) and the A and B accumulators. As
you can see, there are actually several more registers.

The X and Y registers are effectively identical. They are
called “index registers” because they act sort of like your
index finger in a card file, pointing to a specific entry.
Remember that registers are special data storage locations
inside the processor. Each of these two index registersis 16
bitsin size. Because X and Y are 16 bits, they can be used to
point to a specific memory location, that is, to be indexed to
that 16-bit address. Indexing is its most common function,
but not its only use; here’s an example of indexing.

Let’s say there’s a message to be displayed on the screen.
I'll point my Y register to the video screen memory, and
point my X register to the memery that contains the
message. My program can then tell the A accumulator
register to get the byte of data from the memory location
indexed by X and put it in the memory location indexed by
Y. Load A accumulator from memory indexed by X, store A
accumulator to memory indexed by Y. The first letter of the
message is then displayed. It’s like telephone directory
assistance. The operator indexes the number, the
telephone transmits it, and you index it on your phone pad.
IiTincrement both X and Y after displaying the first letter
ofthe message — thatis, if add one to the present values of
X and Y — they will be pointing to the next locations in
memory. I can have the program repeat the process of
loading from memory indexed by X and storing to memory
indexed by Y. That would get the next letter of the message
and display it in the next position on the screen. Load A
from X-indexed memory, store A to Y-indexed memory.

I've got a program to do that.

Index Registers

* The 6889 microprocessor has 2
64K memory wap. hat is its
address range in decimal, in
binary, and in hexadecimal.

The mapg runs from @ to 63,535 in
decimal, from 0082 0008 020
088 to 11111111 1111 1111 im
binary, and from $8008 to $FFFF
in hexadecimal.

& A byte of information is eight
bits; an address is 16 bits.
How many bytes are needed to
describe an address.

Two bytes describe an address.

% What part of the processor
determines what it must do?

The instruction decoder.

t Where does the instruction
decoder pet its imstructions?

From mesory.
+ What wemory locations does the
orocessor use when the power is

turned on?

It uses $FFFE and $FFFF when the
power 15 turned on,

* What does the processor get
frow mewory location $FFFE?

Ore byte,

% What does the processor get
from memwory location $FFFF?

One byte.

The orocessor puts the bytes
from memory locations $FFFE and
$FFFF together. What is the
process cailed, and what is the
result in this case?

The process is called
concatenation, and the result is
a two-byte number.

How many bits is two bytes?

16 bits.

Learning the m 21

Displaving a message

+ How does the processor use the
i6-bit nusber obtained by
concatenating the contents of
wemory locations SFFFE and
$FFFF?

It uses the 16-bit number as an
address.

+ What is the 16-bit number the
address of?

The 16~bit numwber is the address

of the first instruction the
processor will execute.

% hat part of the processor
uses this instruction?

The instruction decoder.

track of the
6889

* What keeps
instructions in the
processor?

The progras counter.

+ Mhat is the progras counter
and what is its shorthand neme?

The program counter is a 1b-bit

register that contains the
address of a computer
instruction. Its shorthand name
is PC.

Namwe the index repisters.
X ard Y.

* What is the size of the X and
Y index registers?

¥ and Y are each 16 bits in
size,

t Bhat is
function of the X and Y
registers?

the wmost comson
index

To index an address; that is, to
hold the number of a wesory
location for reference.

% What is the starting address
of the normal video display?

It starts at §,024.

22 Lesson 3

Program #5, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1@ DATA 8E. A6, 0@
2@ DRTA 1@.8E. 04, @i
3@ DATA A&, 8@

4@
S5

DRATA A7. AR
DATA 8L, 8, &

&2 DATA 26.F7
72 DATA 39

{1@ REM LOAD X WITH $@60Q MESSGE

12@ REM LOAD Y WITH $040@ SCREEN

132 REM LOAD A FROM X-INDEXED, AND INCREMENT X EBY 1

14@ REM STORE A TO Y-INDEXED. AND INCREMENT Y EY 3

1S@ REM COMPARE IF X 1S 2820

16@ REM ERANCH EACK IF NOT

Ze@ FOR N = 16@@2 TO 16&16

212 READ A%

ZE@ A=VAL ("&H"+AS)

230 POKEN, A

24@ NEXT

25@ CLS

Z6@ PRINT"THE MESSAGE YOU ORE READING WAS ORIGINALLY DISPLAYED E

Y PRINTINGIT NORMALLY USING RASIC.
E ~~ DNCE THE BASIC PROGRAM HAS EEEN RUN

IT CANBE RECALLED AT ANY TIM
—~— BY TYPING "CHR$(34)

"EXEC"CHR& (34) ", ¥

o7

E LANBUAGEPROGRAM DESCRIBED IN LESSON 3.

MEMORY THE &8@3 MACHIN
IN THIS PROGRAM, INDEX

PRINT"THE BASIC PROGRAM PLACED INTOD

REGISTERSX AND Y ARE USED TO TRANSFER A GROUP OF BYTES (IN THI

S CASBE

z8a

ORDINARY ASCII CHARACTERS) FROM "
PRINTYELSEWHERE IN MEMORY DIRECTLY TO THE SCREEN MEMORY. "

292 PRINT" "STRING$(3@, 131);
3@ FOR N = &H49@ TO &HEFF
312 POKEN+&HSR&, PEEK (N)

32@ NEXT

33@e CLs

34@ FORN=1TO1@@@:NEXT

35@ EXEClc@ud

399 GOTO333

RUN this program. A message printed by BASIC will
appear on the screen, the screen will be cleared, and the
message will appear again, this time printed by the machine
language program I've just described. Now I feel bound to
prove that I'm not fooling you with some fancy BASIC
manipulations. Once you have RUN the program the first
time, hit <BREAK> and then delete it. Type NEW to
clear out the program. Now, I say smugly, type EXEC —
that’'s E-X-E-C — and hit <ENTER>. The message
reappears, partly obliterated by an “0K”.

To see the whole thing, enter these two lines. Line 10.
EXEC. Line 20. GOTO 20. That’s it. Line 10. EXEC. Line
20. GOTO 20. Now RUN that. There’s the message.

Have some fun. Try changing the program. Hit
<BREAK>. POKE 16001,128 <ENTER>. POKE
16012,130. <ENTER>. Then RUN. You can POKE

-4

' v
TARMIT ZMOAO N

16001 with any number from 0 to 253. POKE 16012 with
the previous number plus 2. For example, Hit <BREAK>,
POKE 16001,0 <ENTER>.POKE 16012,2 <ENTER>.
RUN again. Take a break here to load and RUN the next
program. When you RUN it, notice that it expects you to
input a hexadecimal number this time.

Program #6, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. if the
program is not similar to the listing, or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

Condition codes

That number was decimal since
it didn't have a dollar sign in
front of it, What is that
starting address in
hexadecizai?

1,204 in hexadecimal is $0408,

* If the X register is indexed
te an ASCII character in mewory
and the Y register is indexed to
the video display at #0408, how
can the A accusulator pet the
wessage to the screen?

The A accumulator can load the

1@ INPUT"MEMORY LOCATION (2@ TO FE)";pgYelue from sesory indexed by X

2@ A=VAL ("&H"+A%) : IFAR) Z540RA(QTHENLG
38 POKEi1c@@1, A

4@ IFA=C54THENR=QELSEE=RA+Z

S@ POKMEleR12Z, B

6@ EXEC

7@ FORN=1TO12@0@:NEXT

8a CLS

S GOTO1Q

You've RUN the program, and seen a number of curious
screen displays. What you have done is simple. You
redirected the X register, which was pointing to the
message I stored in memory, to somewhere else in memory.
You can see that it takes very few changes to spy anywhere
into memory with even that little machine language
program.

Return to Figure 5 in the MC6809E data booklet. At this
point, I have introduced the A and B accumulators, the
program counter PC, and the X and Y index registers.
Again, if you feel you might need to review, this is the time
to do it.

Turn your attention to Figure 5, and notice the bottom
register marked CC — the condition codes. This special
register gives the processor its limited intelligence. Also
called the “flags”, the condition code register contains bit-
by-bit information about the processor’s activities ... what
the processor does, and what the results indicate. In the
beginning, the flags of most interest will be the Carry/
Borrow Flag and the Zero Flag.

In this lesson’s first program example, I had the A
accumulator load a value from memory indexed by X, and
store that value in memory indexed by Y. My program did
that for exactly one screen full of information — 512 bytes.
I should say that my program did that for exactly hex 200
bytes, which is an easier number to work with.

How did my program know to stop after $200 bytes? Turn
to your documentation book for this lesson, and follow

Learning the

and store the value to memory
indexed by Y.

% How does it do this?
1t follows instructions.

% Where does it get the
instructions?

It gets the imstructions from
mesory.

% What is another name for the
condition codes?

The flags.

* What information is held by
the condition codes?

Bit-by-bit information about the
orocessor’s activities.

¥ What activities is the
processor engaged in?

The instructions it is
following.

% What keeps track of the
instructions it is following?

The progras counter, or PC.
% Now, where were we?

Talking about the comdition
todes, or flags.

6809

Compares

*0h vyes. What does the
instruction "compare” do?

It compares the contents of a
register against another value.

In what way does it cospare?

It compares by performing a
*ghost” subtraction.

+ What does
subtraction do?

the ghost

It sets the condition codes {or
flags) according to the results
of the ghost subtraction.

* What are the results and the
condition codes if the
register's value is greater than
the value being compared with?

If the register's value is
greater than the value being
compared with, the ghost
subtraction causes no borrow and
the result is not zero. The
carry/borrow and zero flag is
turned off.

t What are the vresults and
cordition codes if the
register’s value is the same as
the value being compared with?

There is no borrow, but the
result of the ghost subtraction
is zero. The carry/borrow flag
is off, but the zero flag turns
on.

t Well, then, what if the
register’s value is less than
the value being compared with?

The result isn't zero, but the
ghost subtraction desands a
*borrow”. The carry/borrow flag
goes on, but the zero flag is
off.

5 how do you use this
information?

By learring the principles in
this lesson very well before
going on to the next lesson.

24 Lessen 3

along with me as I describe a little more precisely how this
program operates.

Step1. Load X register with the immediate
value of $0600. This is the address where the
message is stored in memory.

Step 2. Load Y register with the immediate

value of $0400. This is the address where the
screen begins on the Color Computer.

Step 3. Load A accumulator from memory
indexed by X, and automatically increment the
X register by one.

Step 4. Store A accumulator to memory
indexed by Y, and automatically increment the
Y register by one.

At the end of this step, there is a letter on the screen. X,
having been incremented, now indexes the second
character of the message, and Y, also having been
incremented, indexes the second location on the screen.
What I would like the program to do is somehow check to
see if the job is finished. Here are the questions to
consider:

When would the job be finished? When the screen is full.
When is the screen full? If Y has been incremented, one
step at atime, past the last screen position, and X has been
incremented, one step at a time, past the last letter of the
message. When is X past the last letter of the message?
When it reaches $0800.

So the actions of Step 5 becomes clear.

Step 5. Compare X register to the immediate
value $0800.

“Compare” is a microprocessor instruction which does
what might be called a “ghost” subtraction. The only
purpose of the ghost subtraction’s result is to discover if
the value being compared with is higher, lower, or equal to
the register being compared to. Both original values remain
unchanged — no actual result has been produced — but the
result of this comparison can be discovered by the 6809
reading the condition codes. Here’s how it goes:

If the register's value is greater than the value being
compared with, then the ghost subtraction results in a non-
zero, positive number. Both the carry/borrow flag and the
zero flag are reset — turned off, that is.

If the register’s value is equal to the value being compared
with, then the result of the ghost subtraction is zero, turning
on the zero flag but leaving the carry/borrow flag off.

And finally, if the register’s value is less than the value
being compared with, then the ghost subtraction results in

a negative (but non-zero) number. The carry/borrow flag
goes on, the zero flag goes off.

So how does it fit here? At this point, I'm going to do
something I like to avoid, and that’s to explain assembly
language using similar BASIC commands.

Program #7, a BASIC program. Turn on the power of your Ex-
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing. or if an 1/0 error occurs, re-
wind to the start of the program and try again. For severe load-
ing problems, see the Appendix.

1 X = &HAGA

2@ Y = &HALR

30 A = PEEK{(X) : X = X + 1
4@ POKE Y. R 1 ¥ =Y + 1
5@ IF X (O &HaBa@d THEN 3@
&@ END

This is a short program, and I'd like you to list it before you
runit. In case you've never used BASIC’s peculiar notation
for hexadecimal, it’s “ampersand H”. Nowinthe 6809.X.Y
and A registers are not variables. I'm using those names
here just for visual effect. But follow this through. Inline 10,
X is $0600, the first memory location of the message. Inline
20, Y is $0400, the first memory location of the screen. In
line 30, A takes the value indexed by X — hereluse PEEK
to create the same effect — and X is incremented by one. In
line 40, A stores its value at the location indexed bv Y —
here I use POKE to create that effect — and Y is
incremented by one. In line 50, the compare 1s done. X is
compared with $0800; if it isn't $0800, then the program
isn’t done, and it branches back to line 30.

RUN the program. It does, quite slowly, exactly what the
machine language program did. To finish this lesson, load
and examine the source code that follows on this tape.

Program #8, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears. display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing. or if an I/0 error occurs.
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

aalaa LDX #SQEQQ
2211@ LDy HEQ42R
aqaiza LOOP LDA y X+
aal13a 57A a Y
aRal4@ CmpX HEAB8EQ@
Qa1se ENE LoOp
aRi1ed RTS

gai7e END

Registers vs. variables

Review:

¥hat does CPU mean; what CPU
does the Color Computer use?

Central Processing Unit; the
Color Computer uses a 6889 CAU,

¥hat are the terms for one
binary digit amd for eight
binary digits?

The terws are bit and byte.

What does ALU mean, and what
kinds of arithmetic does the
6689's ALU perfors?

ALY means Arithwetic Logic Unit,
and the 6889's ALU perforss
addition, subtraction, multipli-
cation, AND, DR, NDT, Exclusive
0R, incresenting, decrementing,
anc comparison.

* How many AlUs does the 6829
have, and what are they calleg?

The 6829 has twc ALUs called the
A anc B accumuiators,

* Where do the accumulators get
anc save their information, and
what are the terms for petting
ang saving data?

The accumulators the information
from other registers and from
wemory; the process is loading
and storing data.

* What is the address range of
the 6809 CPU in hexadecimal?

The address range is $80828 to
$FF°F,

t How coes the orccessor pet
started, and what keeps track of
185 intructions?

By loadinp and concatenating the
data at memory :ccations S$FFFE
and $FFFE, and using the resuit
as the address of its first
instruction. The arograw
caunter, or PC, keeps track of
the instructions.

Learning the 6809 25

% What are the index repisters,
what do they hold, and what are
they for?

The index registers are X and Y,
they held 16 bits each, amd they
are most often used to hold the
address of a memory location.

* What are the condition codez?

The condition codes are bits
that hold information about the
processor’s activities.

Bive ancther nawe for the
condition codes, and nawe two of
the codes.

Condition codes are also called

flaps; carry/borrow and zero are
condition codes.

26 Lesson 3

I promised to throw you in the swim during that last lesson,
but sorry T had to leave you swimming at the end of it.
Here’s a short review:

The 6809 microprocessor contains several registers. Each
registeris in effect a memory slot inside the processor, but
each register has a uniquely defined task. The A and B
accumulators are 8-bit arithmetic logic units, or ALUs,
capable of performing simple arithmetic and logical
operations. The X and Y registers are 16-bit registers used
mainly to index, that is to point to, addresses within the
processor’s memory range. The PC, the program counter,
points to the memory address containing the next
instruction that the processor is the act upon.

The addressrange of the 6809 runs from $0000 to $FFFF, a
total of 65,536 locations. When the power is turned on, the
processor fetches the information stored in the top two
bytes of memory, concatenates it, and places it in the
program counter. The processor obtains its first
instructions from there, the instruction decoder begins
translating the instructions into actions, and the computing
begins.

As an example of this much of the 6809’s architecture, 1
presented a short program. In that example, the X register
was given the address of — that is, indexed to — the first
character of an ASCII message stored in memory, and the
Y register was indexed to the first display location in video
memory. The A accumulator loaded a value from memory
indexed by X, and stored that value in memory indexed by
Y, causing an ASCII character equivalent to the stored
value to appear on the screen.

Atthe end of thelesson, I had introduced the flags, formally
known as the condition code register, whose purpose is to
provide simple indications about the most recent
instructions executed by the 6809 processor. In this case,
by comparing the value in the X register to a known value,
and subsequently checking the condition codes, it is
possible to determine when the complete message has

Learning the

Machine language oOrogramming
actually begins in this lesson.
You'1l be needing your

editor/assembler EDTASH+ now, so
be sure to have your copy before
beginning this session.

What is the address range of
the 6883 processor, in hex.

0080 to SFFFF

% How many bytes does the 4
accumulator hold?

One byte.

t How wany bytes does the X
repister hold?

Two bytes.

*X and Y are what kind of
registers? Why?

Index registers; because they
index an address in memory.

* What does the program counter
{PC) indicate?

The wemory address containing
the next instruction the
processor is to act upon.

%+ What is the formal name for
the flags?

The cordition codes, or the
condition code register.

6%9 27

Mnemonics

* There is a set of verbal
descriptions of processor
commands; what are these
descriptions called?

Verhal descriptions of processor
vommands are called snemonics.

¥ How is "wremonics”
pronounced?

It is pronounced nuh-MON-ix.
What do snemonics represent?
Processor commands.

* What is the proper name for a
processor command?

f oprocessor comsand 15 an
operation code, or oprode.

#+ One oprocessor command is
written LDX. What does this
mean?

LDX means “lcad X register”.
dhat 15 LDX?

LDX is an oprode meaning “load X
register”.

+ what is STR? MWhat does ETR
represent? What does STR mean?
What action does il cayse?

87R is a mnemonic: it represeris
an opcodey the oocode weans
“store A accumelator”; it causes
ihe contents of the A
accumulator to Dbe stored in
HEBOYY.

+ Describe CHMPX. What 1s it?
What does it represent? What
does it mean? What action deoes
it cause?

LmMpx is a uwnemonicy it
represents an opcode; the oprode
weans “compare X register”; it
causes the value of the X
register to be compared with
another value..

28 Lesson 4

been displayed. [used an example in BASIC to outline the
process, and finished by having you load and examine a
mnemonic source code. Load that program again — it
follows on this tape — and then I'll talk about mnemonics
and source code, and what they mean.

Program #8, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing. or if an [/0 error occurs,
rewind to the program'’s start and try again. For severe lnading
problems, see the Appendix.

Q100 LDX HEQEDD
Q@11 LDY H$QLQQ
Q1@ LOoP LDA X+
Q@13 5TA LY+

QR 14@ CMPX #$2BQ@
aR15@ EBNE LOOP
Qa16@ RTS

Qa17@a END

We’'ll spend a session learning to use the editor/assembler
alittle later. For the moment, print this listing on the screen
by typing P followed by ENTER. What you see should
almost look familiar from the descriptions of the processor
instructions you've been getting from me.

What you're looking at are mnemonics, somewhat verbal
descriptions of processor commands. I'll read the
commands in the third column. Load X, Load Y, Load A,
Store A, Compare X, Branch if Not Equal, Return from
Subroutine. One more time, just for familiarity. Load X,
L.oad Y, Load A, Store A, Compare X, Branch if Not Equal,
Return from Subroutine. These commands are called
operation codes, or Op Codes.

In the fourth column you'll see the Operands, those values
and indications used by the Op Codes. I'll read the third
and fourth columns together, which provides a complete
description of each 6809 processor instruction in turn.
Here goes.

@ I.ocad X with the immediate value
hexadecimal 0600

® l.oad Y with the immediate value
hexadecimal 0400

® [oad A with the value from memory
indexed by X, and increment X by one

® Store A to the value in memory indexed by
Y, and increment Y by one

Loa@r) X register
STM A Accumulater
@omgre Y reqister
ReTorn from Subrwhm

e (Compare X to the immediate value of
hexadecimal 0800

@ Branch if the result of the previous
computation was not zero, that is, if not equal,
back to the instruction labeled LOOP.

© Return from subroutine. The return is
used here only because this program is a
machine-language subroutine we have used
from BASIC. This RTS gets the processor
back to BASIC.

I've used some new terms. “Immediate” value is one of
them, one which I slipped into the previous lesson.
“Immediate” is a piece of jargon 'm not fond of, butit’s the
formal term meaning “use this actual number”. Inline 100,
that means Load X with the number hex 0600. The number
sign preceding the value is used to indicate an immediate
operand.

The rest of the listing should look fairly straightforward.
The plus signs after X and Y mean automatically increment
those registers by one. There are also ways of incrementing
by two, or decrementing by one or two. Later for that.

But one thing might look peculiar, and that’s the comma
sitting in front of the X and Y in lines 120 and 130. To my
eyes, that comma’s a beautiful thing; it gives me computing
power. Line 120 could have been written another way: LDA
0,X+ . .. which means, Load A with the value in memory
indexed by the X register plus an offset of zero. One more
time. LDA 0,X+. Load A with the value in memory indexed
by the X register plus an offset.

In this program, the offset value is an implied zero. It’s
implied by leaving it out. In effect, the A accumulator gets
its value simply from the memory location indexed by the X
register. If X is $0600, A loads its value from $0600. No
problem.

But that offset can be an astoundingly powerful thing. Most
kids have written letters to friends in code. They mix up the
letters and ever so seriously send the message. Cryptogram
puzzles work that way, too. Using the 6809’s amazing
indexed-offset technique, encoding — and decoding —
that kind of message becomes a snap. I remember making
off with a Scrabble set to write my cryptograms. I would
sort out one alphabet of Scrabble tiles, and then write out
the letters of the alphabet in order on a large sheet of paper.
Then I'd shake up the letters and put them down on my
paper, one at a time. A might be X, B would be L, C would
turn into N, who knows. That would be my code. I would
write my message and carefully code it, letter by letter.

Getapencil and alarge piece of paper. Inone line across the
paper, write the letters of the alphabet in a mixed-up order.
When you've finished that, write, in order, the hex numbers
$00 to $19 above those letters. The letters will be out of

Learning the

Immediate & Offset

What is the name for a machine
instruction?

fn opcode.

+ What is the name for a value
or indication used by an

opcode?

fin operand.

Read the smemonic LDX.
Load X register.

Read the snesonic LDYX #$$8508.

Lload X register with the
immediate value hexadecimal
8cen.

What does immediate mean?

Use the actual value, the value

immediately following the
opcode.
% What symbol is used to

irdicate an imsediate operand?

The nusber sign or crosshatch
i$).

* What symbol 1is wused to
indicate hexadecimal notation.

The dollar sign {$).

Write the wnemonic for "load

the Y vregister with the
immediate value hexadecimal
1234".

LDY #1234

% Write the mmemonic for the
instruction "load the X register
with the immediate value 8"

LDY #@ ar
LDY #0888 or
LDX #50800 or

+ What does the comma indicate
in the mmemonic LDA ,X ?

The comma indicates an offset.

6809 29

Labels, constants and USR

+ What is the offset
mnemonic LDR X 7 uhy?

in the
The offset is zero because it is
not specified.

+ What does the comma indicate
in the mnewonic LDB $43,Y 7

The comma indicates an offset.

What is the offset
snemonic LDB $43,Y ?

in the

The offset is $43.

Write the wmmemonic for the
instruction *load the A
accumulator with mewory imdexed
by X, with an offset of
hexadecimal $9C°.

LDA $3C, X

% What action does the mnemonic
opcode LDY #$CCCC perform?

It loads the X register with the
immediate value hexadecimal
$CCCC,

* What action does the wnemonic
opeode LDR $33,X perfors?

It loads the R accumulator with
the wvalee found at wemory
indexed by X, with an offset of
hexadecimal $33.

You find these instructions:
LDX #$CCCC

LDA 433X

From what wewory location does R
get its data?

$CCFF, that is, $CCCC offset by
$33.
% What is the ASCII value for

the letter A (in hex)?

Uppercase A is $41, lowercase a
i5 $61

Mhat is the ASCII value for
the letter I (in hex)?

Uppercase 1 is $5R, lowercase z
is $6A,

30 Lesson 4

order, but the hex numbers will be in order. Turn this tape
back on when you're finished; turn the tape off now.

Now you've got 26 rearranged letters and 26 hex numbers
in order. Above letter $00 write “X Register”. Below letter
$00 write “CIPHER”. CIPHER is a convenience label that
will identify the start of the coded alphabet. That's “X
Register” above letter $00 and the label “CIPHER” below
letter $00.

And now to the program. The idea here is to be able, givena
value from somewhere, to extract the coded value from the
table and provide it to the user.

Let’s say the value is in ASCII, a normal state of affairs for
these machines. Letter A is ASCIThex 41, leiter Z ishex 5A.
The question is how to get from ASCII values $41 through
$5A to the encrypted values in the table, which are
numbered $00 through $19. There's really no mystery or
wonder to this part. If you subtract $41 from $41, you get
$00. Subtract $41 from $5A, you get $19.

Sothe ASCIIvalues come in from somewhere, vou subtract
$41, and the resulting number is the position of the
encrypted value in the table. You extract the value from
that position, and the encoding is done.

There’s a program to write now, during which I'm going to
introduce some new parts of the 6809 architecture, This
would be a good time to take a break and review what's
been done so far. When you've finished reviewing, open
your Extended Color BASIC manual, and read pages 145,
146, and all except the last paragraph on page 147. Don’t
worry if you don't understand all of it; I'll explain later.

Please read pages 145, 146 and 147 in the Extended Color
BASIC manual. This is the beginning of the chapter called
“Machine Languege Routines™.

[X RecisteR §
$00 B §02
QX N O

3

The program you have to create will accept an ASCII value,
subtract a constant, and use the result to pluck a number
from a table of encrypted letters.

You'll actually be creating a working program, so you need
a jumping off place. BASIC is good. You can transfer a
value from BASIC to machine language; it’s part of the
USR command. In your Extended Color BASIC bock, the
USR function was described. The “argument” they're
talking about is the value transferred to amachine language
program from BASIC, and that will be the ASCII value you
are going to encrypt. Once control is given over to your
machine language program from BASIC, your program
must obtain that ASCII value.

When USR is executed by BASIC, the first step is done for

ALPHA

IELESECRV IS

ASCIL
LETTER. CODE

41

9z
4%
ot
4s
o

CONSTANT TABLE
GFFSET oS ITION

- 1
- 4l
_q,
-
- 4l
- Y

/’ELﬁL"‘_‘

20 PRINT X

(/40 FeRX = | TOI0O

B Az UERGE (%)
§‘|‘0 NEXT

¥

"

USER

Your,

FR BIEP
YouR,

NEXT
IRSTRUCTION

MACHINE
LANGUMLE.
SUBROUTINE-

—/

O

!
Z
4
o

FikeT i) ¢

veT N Fe7Er
\T&E \
STALK

R

LATAT

ARSTOUT

A
e

you. The value is waiting in memory, and part of BASIC’s
own machine language commands are set up for your use.
The Extended Color BASIC manual described this
process of transferring your integer ASCII value by saying,
“Tt’s possible to force the argument to an integer by calling
BASIC’s INTCNV routine from the USR function
(INTCNV = X'B3ED").” I'll tell you what that means. It
means you can transfer an integer from BASIC to a
machine language program by using a part of BASIC found
at address $B3ED. Your program must consider the chunk
of BASIC beginning at $B3ED to be its own subroutine.

Subroutines in machine language are almost identical in
principle tothe GOSUBsin BASIC, except that you have to
know more about them. Primarily, you have to know about
the stack. Return to your MC6809E data booklet, and look
again at Figure 4 on page 5. Notice that below the X and Y
registers are two registers marked User Stack Pointer and
Hardware Stack Pointer.

The stack is one of the best- and worst-named registers in
microprocessor programming. It's well named because it s,
in fact, a stack full of bytes being temporarily stored. You
put things on the stack in first-in, last-out order. Thatis, it’s
like that pile of magazines on your coffee table. The first
magazine you stacked there is the last magazine that gets
taken off the table because everything else is on top. Go
look. I bet you didn’t realize there was still a January 1975
Reader’s Digest underneath all that.

Seriously, the stack is a register which points to a memory
location. The address being pointed to changes as the stack
grows or shrinks. But the stack is badly named because it
works upside-down. It's what’s known as a “push-down”
stack. Every time I push a byte on the stack, the address
decreases by one. It’s like stacking those magazines on the
ceiling. For the moment, just remember first-in, last-out.

The reason you have to know about the stack to use a
subroutine is because it is on the stack where the 6809
processor puts the present address in its PC register — the
program counter — when it jumps to a subroutine. It breaks
the address into two bytes of data, pushes the two-byte
address on the stack, and puts the address of the
subroutine in the program counter. The next instruction, so
far as the program counter knows, is now at the beginning of
the subroutine! It goes along, executing instructions in the
subroutine, until it comes across the command RTS (return
from subroutine). The instruction decoder pulls that
original two-byte address off the stack, reconstructs it, puts
it in the program counter, and presto! you're back where
you left off in the original program.

Some jargon now. This is known as a subroutine call, and its
mnemonic is JSR — jump to subroutine. As [said, it works
just like a BASIC GOSUB, and like BASIC, you can nest
your subroutines — call one from inside another from
inside another. But here’s where the difference shows up.
You don’t have to keep track of much in BASIC — it

Learning the 0

The Stack

& How wmany letters are there in
the alphabet (in hex)?

There are $I1A letters in the
alphabet.
¥ If A is considered letter

nusber $88, what is letter 77
Letter number $19.

If the X register points to a
semory location that contains a
sperial code for letter A
{letter nusber $08), write a
single snesonic commsand to load
the A accumulator with the
special code for letter L.

LDA $19,X

How does BASIC tramsfer a
value to storage for use by a
machine-language prograns?

With the USR comsand.

What is needed with the USR
comwand to transfer a value to
storage for use by a
sachine-language progras?

It needs an argument following
the comsand.

If M is a BASIC variable, and
the value to be transferred is
149, write a USR command to
transfer a value to a
sachine-language program.

¥=USR(159)

* At what mewory location does

BASIC's integer conversion
routine begin?
The integer conversion

subroutine starts at $B3ED.

% What does the wmnemonic JSR
mean?

Jusp to subroutine.

& What register does a Juxp to
subroutine require?

The stack.

31

Pushing and pulling

Why does a jump to subroutine
require the stack?

To store the current position of
the progras counter to use as a
return address.

* What type of stack is found in
the 6889 processor?

A push-down stack; or, a
first-in last-out stack.

% What comsand places the
grogram counter on the stack?

J5R, jump to subroutine.

¥ What command places the
original address back in the
program counter?

RT5, return from subroutine.

¥ What action does the command
JSR $B3ED descibe?

Jump to subroutine at wmemory
location $B3ED.

What is the process of placing
a value on the stack called?

Pushing.

What is the process of t{aking
a value off the stack called?

Pulling.

% What does the program counter
{PC) keep track of?

The next instruction the
processor is going to follow.

At address $1088, a comsand is
gncounterd whose mmewonic is JSR
$B3ED. Upon execution of J3R
$B3ED, what value is pushed on
the stack?

$1083.

How many bytes are pushed onto
the stack whenm JSR $B3ED is
executed?

Two.

32 Lesson 4

“cleans up” for you. But you've got to know where your
machine language stack is, because it’s also used to save
information for later use.

Refer again to the Extended Color BASIC manual, on page
147, entitled “Returning to BASIC from a USR Function”.
It states, “The values of A, B, X and CC registers need not
be preserved by the USR function.” That implies that the
value in the Y register is needed; how do you save it? By
pushing it on the stack, that’s how. Once the two bytes that
make up the 16-bit Y register get pushed on the stack, you
can then modify Y as you wish. Before returning to BASIC,
pull Y from the stack, and off you go.

If you're ahead of me, then you're asking, “which stack?”
The MC6809E data booklet indeed stated that there is
both a User Stack and a Hardware Stack. Subroutine calls
automatically use the Hardware Stack, so that’s a certainty.
For pushing and pulling various values, you might use
either of the remaining stacks. But because of the complex
software in the Color Computer, the User Stack is basically
reserved. For the most part, stay away from it. The
Hardware Stack is what’s left.

Now the mnemonics. To push a value on the Hardware
Stack, the mnemonic is “pushstack” — PSHS. The
operand is the set of registers you wish to push. To push X,
Y, and A, for example, you would pushstack X Y A — PSHS
X,Y,A.

So where are you? You've got an encrypted ASCII alphabet
in a table, you know you have to save the Y register for
BASIC, you know that $B3ED is the address of the integer-
conversion subroutine. Page 149 of the Extended Color
BASIC manual tells you that $B4F4 is the subroutine call
that properly returns an integer value to BASIC. All that’s
left is to write the program. If you need it, now’s the time to
take a break and review.

Now to the program; do it on paper first. The Y register
must be saved, so pushstack Y — write PSHS Y. Now there’s
the matter of getting the value waiting in BASIC. Jump to
the subroutine at $83ED for that. Write JSR $B3ED. The
manual tells you that the value from BASIC is returned in
the D register. What’s that? It’s merely the name for both A
and B 8-bit accumulators used as if they were a single 16-
bit accumulator. Since the value is an ASCII character, it is
only one byte in size, fitting into the B accumulator.

The encryption table has to be identified. Write Load X
with immediate value CIPHER. Write “LDX” and across
from it write “# CIPHER”. The X register is pointing to the
zerceth entry in the encrypted ASCII table.

Remember that $41 has to be subtracted from the ASCII
value to get it into the range $00 to $19. Subtract the
immediate value of $41 from the B register; thatis, subtract
from B immediate value $41. Write SUBE #$41.

u" AT STARY

aY-0'¢
o
Sy N

&

RETUEN
APDRESS

v
FC

Oyl

The magic is next. You know that the B register contains a
value from $00 to $19. You know that X is pointing to the
zeroeth value in the encrypted table. All that’s left of the
hard work is to use that information to find the value you
want from the table. That value is found at the address
indexed by X, plus the offset value found in register B.
Load A with value indexed by X offset by B. Write LDA B, X.
You've got it.

The Extended BASIC manual says that to get the value
back to BASIC, it has to be in the D register — remember
that’s A and B used as one register — and $B4F4 has to be
called. That means the value now in A has to be placed in B,
since the B register is the least significant byte of the D
register. There’s a transfer instruction for that . . . transfer
A to B. Write TFRA,B.

Now A and B contain the same value. You want A to be zero,
so clear it. Write CLRA. It looks like most of the work is
done, so call that routine that gives the value to BASIC.
Write JSR $B4F4. Now get the Y register back (you do
remember you saved the Y register, don’t you). Pullstack Y.
Write PULS Y. And finally, it’s back to BASIC — return
from subroutine. Write RTS.

There’s a tape to load now. When you’re done with that,
take a break.

Program #9, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

@a12@ CIPHER EQU $3000
20110 DRG $310@
@120 PSHS Y

20132 JBR $E3ED
221 4@ LDX #CIPHER
20152 SUEE #8541
@0162 LDA B, X
a217@ TER A, K
oa18@ CLRA

22190 JSR $E4F 4
QveeR PULS Y

Q0210 RTS

QazER END

Type P#:*, <repeat> and hit <ENTER>. There are just
a few new things in this listing. Line 100 contains the
notation CIPHER EQU $3000. This line tells the editor/
assembler that the label CIPHER is to mean hex 3000. So
whenever it encounters the label CIPHER, the editor/
assembler knows to work with the value $3000. This is
called an “equate”, and it makes life easier for you as a

A+B-D
% Using the previous example,
upon a3 return from subroutine
{RTS), what value is placed into
the program counter (P0)?
$1083,

t Other than JSR, what
instruction type places a value
on the stack?

Push,

+ How many stacks are there in
the 6883?

Two.

% What are the namwes of the two
6889 stacks?

The wuser stack) and the
hardware stack {(5).

+ Which stack do subroutines use
autogatically?

The hardware stack.

* What is the snemonic for the
command to place a value on the
hardware stack?

Pushstack §, or PSHS,

* Write the smemonic for pushing
the X register on the hardwave
stack.

psHS X

* Write the mnemonic for pushing
the A accumulator on the
hardware stack.

PSHS A

Write the mmemonic for pushing
both the A accusulator and X
register on the hardware stack.
PSHS A, X

t What is the wnemonic for
taking a value off the hardware
stack?

Pullstack §, or PLS,

Learning the 6809 33

Assembly

Write the mnemonic for taking
the X register off the hardware
stack.

LS X

& Write the mnemonic for taking

the A asccumulator off the
hardnare stack.
PES A

& Write the snesonic for taking
the B accumulator; X register
and Y register off the hardware
stack.

PULS B, X, Y

If the value of the X register
is $1234 and at address %1008
the program executes JGR $B3ED,
what values would be found on
the stack, from first in to last
in?

First in is $34, then $12, then
$83, then $10.

Using the previous example,
what would be the vesult after
these two instructions:

RTS8
PLS ¥
The main progras would bhe

returned to {($18@3 back in the
progras courter) and Y would bhe
$1234.

The previous example made Y
equal to the value of X. What

other instruction could have
wade Y equal to the value of X?

Transfer X to Y (TFR X,Y)

& What does ORE wean?

ORE weans origin, the first
memory location used in a
snewonic listing.

What does ORG $3FB8 mean?

It means the first wemory

location in a snimonic listing
is $3F08.

34 Lesson 4

programmer. You canremember meaningfullabels instead
of heaps of numbers.

The other new item is in line 110, reading ORG $3100. This
means that the origin, or first address, of your program will
be memory location $3100.

Beyond that and the END statement in line 220, this
program should look exactly like the one you wrote down.
This is the source code for the encryption program -~ the
mnemonic representation of the instructions you want the
6809E processor to follow.

Do a few things mechanically now; I want you to try the
program, but I'm not ready to explain all about the editor/
assembler. Some of that’s for next time. Type A/IM/AO.
I'llrepeatthat. A/IM/AO. Hit <ENTER>. A listing should
be scrolling by, and your star prompt will return. The
editor/assembler has just turned your mnemonic code into
a group and 6809 instructions, and placed them in memory.
Briefly, A means assemble the program; IM means
assemble it into memory, and AQ means absolute origin,
that is, assemble the program exactly where your ORG
statement says to do it.

Now Quit the editor/assembler. Type Q and hit
<ENTER>. You will be in BASIC now, and I have another
short program for you to load.

Program #10, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1@ DEFUSRB=&HI1Q@

2@ X=9@:FORN=8H3QOQ@ TO &H3@19:POKEN, X:X=X—1:NEXT
30 AS=INKEY$:IFA$("A" OR A$) "Z"THENIQ@

4 A=ASC (A%)

5@ B=USR{A)

6@ PRINTCHR® (E) :

7@ GOTO3@

You've listed this program. Line 10 defines your USR
program to be at hex 3100, the origin you used. Line 20
places the letters of the alphabet in reverse order in
memory starting at $3000 — where the #CIPHER
encryption table is supposed to be. Line 30 is an ordinary
INKEYS$ that picks off an uppercase character as you type
it. Line 40 gets the ASCII value of the letter. So far,
everything is BASIC you probably know, nothing special.

Finally, line 50 transfers the ASCII value to the machine
language program and executes the program. When the
machine language program is done, it returns to BASIC.
Line 60 prints the ASCII character represented by the

CIPHER B $30CC o
\

N

SRHIFA o
LY 42000 [& />
e (S

-/

value transferred back from the machine language
program. Line 70 repeats the process.

RUN the program, and begin typing the alphabet. I'll be
with you next tirme. Be sure to review this lesson hefore
then.

The Code

dhen using the
editor/assembler; what does the
A command mean?

R weans assesble the mneeonic
code intc a group of 6889
imstructions.

+ When using the
editor/assesbier R command, what
does /IM mean?

/I means to assemble the
snemonic code into 6883
instructions, and place thee in
nEROTY,

When using the
editor/assembler A {assemwbie)
comsand with /IM (in wemory),
what does /R0 mean?

/A0 means to assesble the
sresonic code intc 6809
instructions and place them in
semory at the origin specified
in the ORE line,

* The source listing says ORG
$2408. You enter A/IW/AD.
Where is the first byte of your
source listing placed in
wenory?

fit location $2480.

Learning the 6809 35

36 Lesson 4

You’ve been using mnemonics lately in creating machine
language programs, and I think that’s gotten away from the
binary instructions themselves. It's these binary
instructions which are doing the work; the mnemonics are
how you and [remember what the instructions are and how
they operate. For example, one of the instructions in the
last session was to load the X register with the value labeled
CIPHER. CIPHER in turn was address hex 3000. Load X
with an immediate value is in fact hex code $8E.

The purpose of the editor/assembler is to make
programmers’ lives easier by accepting understandable
mnemonic statements like “Load X immediate CIPHER”
and turning them into machine codes like hex 8E 3000. The
mnemonics do make the program look long and
complicated, but in fact, in spite of all the apparent typing,
the entire program consists of 21 bytes!

I'd like you to load that encryption program again.

Program #11, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

Jaae aataa CIPHER EQU BIQQQ
1@ aalia ORG SI160
31@@ 34 =] aaiza FSHE Y
1@z BD B3ED [ralr B "] JoR $RIED
31@5 8E etrdri v Q@149 LDX #CIPHER
3ia8 Ce 41 @15 SURE F T
SiaR A6 85 QgL 6@ L DA B.X
310C 1F 89 api7e TFR R« E
S1QE 4F aalan CLRA
31@9F EBED B4F 4 aaize JSR SE4F 4
311z 35 & aazae PULS Y
3114 33 Qazia RT&

ralrtralvi Qasc@ END
Qaane TOTAL ERRORS
CIPHER 3020@

Coming up in this lesson are the
hows and whys of using the
editor/assesbler, and a reminder
that its convenience features
are just that -- conveniences.
They are in no way a replacesent
for the awareness of what the

machine language is actually
doing.
tWhen a word like CIPHER

appears in 2 wnawonic listing,
what is it called?

A label.
#Is a label opart of the
orogran?
No, it is part of the source
listing.
fre the mmewonics the
program?
No, they form the source
listing.
*# This is the hex code the

program?

No, the hex code isn't the

progras either..

+ Then if labels nor snemonics
nor hex code aren’t the program,
what is?

The binary machine instructions
and data.

Learning the 6809 37

Mnemonic code

* If the label CIPHER is set ‘o
$3008, and the wmmemonic LDX
RCIPHER is assembled, what is
the binary result?

Hex $8E 30 @@, that is, 10891110
20110000 20000000,

¥ khat does ORG mean?
Oripin.
¥ What is the oripin?

The first byte of an assembly
listing.
+ What is an organized group of
labels, smemonics, and ooeramds
called?

Ain assembly listing or the
source code.

* What is the source code used
to produce?

Object code.
* What is object code?

Rinary instructions and/or
data.

% Hom is object code produced
from source code?

By assesbling it.
*+ There are four columns in an
EDTASM+ source code listing.

What is in the first column?

The saurce reference lire
number.

+ What is in the secomd columm
of an EDTASM+ source code
listing?

fn optional label.

What is in the third column of
an EDTASM+ source code listing?

The opcode.

38 Lesson 5

There’s the program listing in front of you. Let me refresh
your memory as to what this means. The label CIPHER
was used to indicate a memory location $3000. The origin,
that is the first instruction, of the program itself was set in
memory at $3100. My choices here were arbitrary; and free
memory could have been used. Since this program was to
be used in conjunction with BASIC, the first action was to
save the Y register on the stack, as recommended by the
BASIC manual. Next, BASIC's integer-conversion
subroutine was used to transfer the value from the BASIC
USR function to your program; again, this information was
recommended by the manual, a recommendation you have
to trust.

The X register was indexed to the first entry in a table of
encrypted ASCII values. $41 was subtracted from the B
accumulator — recall that the B register contained the
value after the integer conversion — to provide an offset of
$00 to $19 to the encryption table. In line 160, the A
accumulator loaded from memory indexed by X, with an
offset of B, that encrypted ASCII value. In preparation for
sending this value back to BASIC, it was transferred from A
accumulator to B accumulator, and A accumulator was
cleared to zero. Finally, the Y register was retrieved from
the stack, and a return from subroutine landed the program
back in BASIC.

I repeat that this is mnemonic code — code which serves as
a kind of verbal reminder to you and I as programmers —
but is not in itself something the 6809 processor can use.
The 6809 can only understand simple binary instructions
and data; the editor/assembler converts your mnemonic
code into those binary instructions and data.

In this lesson, I want to guide you in using the editor/
assembler, but first I would like you to see exactly what it’s
for. Type A, and hit <ENTER>. You'll see the “READY
CASSETTE" message, meaning it’s about to prepare an
object code tape. “Object code” is the jargon for a set of
binary instructions and data. Don’t worry about inserting a
tape now; just hit <ENTER> again. The tape recorder
relay will click on, and after a short pause, the screen will
scroll quickly by, filled with both yvour original source code
and with additicnal hexadecimal numbers.

Readiny the short, 32-character screen is tricky, so with all
of these assembled programs, I've provided a printed
listing for reference. Take a glance at the program in your
documentation. It looks much like the original source code
—— infact, it includes the entire source code -— but there are
several additions to it. All these additions are displayed in
hexadecimal notation.

In the first column, the memory locations, that is the
memory addresses to hold the program, are presented in
hexadecimal. In this case, the program’s first instruction
begins at $3100, and the last instruction is found at $3114.
The second and third columns contain the actual
instructions and data that will be placed in memory for the
6809 processor to execute.

Poke Y 5

TR~ +B3ED

LEK RCIPRER.
e

Hex Cooe. g
o A-1
B B3 ED
8 O oo

1

IRE -z maRmE

vt
R

®
N
\

PP w
§RERESS
PERRBR AL

{!'[
2ot
i

1TT!.
4
I\

. eeRns

3

‘\ \\ k

\

\

VSHS Y
<NY/~;1/
EENEERER

%20

SRS A, B Y

“"\Y‘/h, a‘g’»&h
[olo]/Te]o]/]/]0]
N A viguial

=$26

PSHS X,Y

u}‘m».Y/l_rdx’/4
L°J°7]V/ [7]o] o]o[o]
e

>

®

8

TFR A,
A= [O
B= [

(ITTITITT1]

R e e Ve
FROM T

Y

— &

FROM A B
P T e

[“Ie]elef/]olo]/]
= $87

The second column contains the Opcode (that is, the
operation code or instruction), and the third column
contains the Operand (that is, the data the processor uses).
T'll take each in order.

Opcodes first; follow down the column with me. The
opcode to push a value on the hardware stack is $34. The
opcode to make a subroutine call is $BD. $8E loads the X
register with an immediate value, $CO subtracts an
immediate value from the B accumulator, $A6 loads the A
accumulator in an indexed mode, $1F transfers a value
between registers, and $4F clears the A accumulator to
zero. Another subroutine call follows; that’s $BD. The
opcode to pull a value from the stack is $35, and a return
from subroutine is $39.

Each of these opcodes, after interpretation by the
processor’s internal instruction decoder, gives the 6809
information about what to do, what data is coming up next,
and how many bytes long the operand will be. The
operands themselves vary according to what the
instruction demands. In lines 130, 140 and 190, for
example, it's clear that the operands $B3€ED, $3000 and
$B4F4 are addresses, the first for a subroutine, the second
for loading into the X register, and the last another
subroutine. In line 150, the operand $41 is the immediate
value subtracted from the B accumulator.

Lines 120, 160, 170, and 200 are another matter. Here the
operands are not immediate values, but rather

informational data on how to complete the instruction.

Look at line 120, for example; the mnemonic says
“pushstack Y”. As Pve said, the opcode for pushstack is
$34. How about that hex 20?

Pull out your MC6809E data booklet, and turn to page 18.
On page 18, find the heading PULU/PULS. There are two
short tables under the heading marked “Pull Order, Push
Order”. You are looking at the order in which registers are
placed on the stack, you're also looking at the individual
binary digits within a byte.

The command you used was Push Y. Examine the table,
and find the Y register. The Y register is third from the left,
the position of bit 5. If you write a binary equivalent of this
row of registers, where a binary one indicates which
registers to push, then you would write 0010 0000. That
binary number is hex 20... the precise operand assembled
in line 120.

I don’t want to browbeat you with bits and bytes, but it's
extremely important to be aware, to keep in the back of
your mind at all times, what these binary codes do. You
don’t need to memorize any of them; that’s what your data
booklet is for. But knowing how to interpret what you're
seeing is key to effective programming and efficient
debugging.

Let me give you just one more example of these binary
operands. Keep your place on page 18 of the MC6809E

Learning the

Opcodes

+ What is in the fourth column
of an EDTRSM+ source code
listing?

The operand, where required.

* The four columns in an EDTASH+
source code listing are...

The referemce line number, the
label, the opcode, \and the
operand.

¥ When an EDTASM+ source code
listing is assesbled, what
information is added to the
displayed listing?

The hexadecimal
semory contents.

address and

¥ How wmany extra columns of
information are added when an
EDTASH+ source code listing is
assembled?

Three columns are added.

% What is in the first colusn of
the assembled listing?

The address, in hexadecimal.

What is in the second colum
of the assesbled listing?

The opcode, in hexadecimal.

What is in the third columm of
the assewbled listing?

The operand, in hexadecimal.

% In an EDTASM+ source listing,
how many colusms are displayed?

Four,
#In an assembled EDTASH+
listing, how many columns are

displayed?

Seven.

6809

EDTASM+

* What do the seven colums of
an assembled EDTASM+ listing
represent?

The address in hexadecimal; the

opcode in hexadecimal; the
operand in hexadecimaly the
reference lire numsber; an
optional label; the opcode in
EERONICs the operamd in
MNeRONics.

% What part of the assembled

EDTRSH+ listing is the machine
language program?

No part of the assembled EDTAGH+
listing is the machine language
program,

What
program?

is the machine language

It is the object code, or binary
informat ion.

t Bhat does the A comsand
instruct EDTRSM+ to do?

To assemble the object code.

Where is the final object code
placed?

On the cassette tape.

& What does the command A/IM
instruct EDTASH+ to do?

To assemble the object code into
BEMOTY.

t What does the command A/IN/A0
instruct EDTRSM+ to do?

To assesble the object code into
wemory at the origin specified
in the progras listing.

What is the assesbler word for
origin?

ORG.

What does the mmesonic PSHS ¥
pean?

Push the Y repister on the
hardware stack.

40 Lesson 5

data booklet, and look at line 170 in the program — the
instruction is transfer A to B. The transfer opcode, as
noted, is $1F. On page 18, under the heading TFE/EXG,
you'll see combinations of four binary digits. Each
combination represents a specific register. The “transfer
from” register makes up the left-hand four digits of a byte;
the “‘transfer to” register makes up the right-hand four
digits. According to the chart, then, transfer from A to B
should put a value of 1000 in the “from” position and 1001
in the “to” position, creating a complete binary word of
10001001. 1000 1001, you should expect by now, is hex 89
— the same value as the operand assembled in line 170.

Next in this lesson I will be guiding you through the entry
and editing of source code using the editor/assembler
EDTASM+. I recommend you take a break and review
now, and when vou are done with your break, turn to page 3
of the EDTASM+ manual, and read the Introduction.

Read and review the EDTASM+ introduction. The introduc-
tion is printed on the facing page; for more detailed information,
continue with the EDTASM + manual. Return to the tape when
you have completed the reading.

Time to start fresh. If you’ve just come back from reading
the EDTASM+ Introduction, your computer is probably
up and ready to go. Even so, please turn the computer off,
insert the editor/assembler EDTASM+ cartridge in the
slot, pause, and turn it back on. The star prompt will come
up shortly. I'm going to give you some guidance in entering,
editing, and assembling your source and object code with
the EDTASM+ program.

The first thing to remember is that EDTASM+ is a
programmer’s program. [t doesn’t have the fanciness and
fussiness of BASIC, and it can’t tell vou if you've written a
program that will work. Its job is exclusively to translate
mnemonic source code into binary object code, and inform
you if you've typed the source code incorrectly or made an
errorinlabeling or numerical range, or if you have asked the
processor to perform a function it’s incapable of. (Another
feature of the EDTASM+ program cartridge is ZBUG, but
that’s not for this time.)

To help you achieve your programming ends, the editor
keystrokes are minimal and the editor’s commands are few.
If you are using an editor/assembler other than
EDTASM+ (which you may remember I didn’t
recommend) these instructions will apply only in part;
many of the specifics will be quite different. What all 6809
editor/assemblers have in common, however, is the
mnemonic source code.

Time to start. Your most frequent editor commands will be
Insert, Delete, Print, Number, and Edit. Just for reference

W&

EJIASME

The brain of the Color Computer is the 6809 Micropro-
cessor. It is always operating in 6808 machine code, the
only language it knows.

When you program in BASIC, a ROM program called the
BASIC Interpreter “translates” each statement, one at a
time, into 6809 machine code.

The Editor-Assembiler + allows you to write a program in
6809 assembly language and assemble it into a single,
efficient 6809 machine code program. This gives you
two very powerful advantages:

» You are no longer limited to the commands in the BASIC
language.

« Many steps that are necessary to interpret a BASIC
statement into machine code will no longer be needed.
Therefore, the programs you write with the Editor-
Assembler + will run much faster, and probably use
less memory.

This manual demonstrates how to use the Editor-
Assembler +. It will not teach you how to program in
assembly language. Radio Shack has an excellent book
devoted to the subject. It's Catalog Number is 62-2077.
You can purchase it through any Radio Shack store.

The Editor-Assembler + contains three systems:

- The Editor, for writing and editind 6809 assembly lan-
guage programs.

« The Assembler, for assembling the programs into
6809 machine code.

» ZBUG, for examining and debugging your machine
code programs.

To use them, all you need is a Color Computer with 16K
RAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,
using mnemonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulting program listing is called TEXT.

2. Then you'll assemble the instructions of TEXT into
machine code which the 6809 Microprocessor can
recognize, but which looks like nonsense to most peo-
ple. Thus, you'll create CODE consisting of op codes
and data.

3. You'll use ZBUG to test and debug CODE until it's per-
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler +.

4. From BASIC, you'li load CODE (with CLOADM) and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USR).

Learning the 6809

EDTASM+

41

Inserting lines

What is the hexadecimal opcode
for PSHS?

$34

% How is does the operand for
opcode $34 (PSHS) identify which
registers are to be pushed?

By the order of the binary
digits in the operand.

The order of the binary digits
for the push operand is PL, §
for 1, Y, X, DB, By A CL.
What is the binary operand to
push registers A, B, X and ¥ on
the stack?

ogeila1ie.

What is the hexadecimal value
for binary 901181187

36

+ Bhat is the hexadecimal value
for the opcode PSHS?

$34

i What is the complete
hexadecimal instruction PSHS
A,B, X, Y?

$34 36

Dnce again, the order of
binary digits for stack pushing
is PC, 5 {or), Y, X, DR, B, A,
L. What is the operand; in
binary and hexadecimal, for PSHS
X,B?

Binary 20218108, hexadecimal
$14,

* What is the complete
instruction, in binary and
hexadecimzl, for PSHS X,B?

Binary 00110100 0000108,

hexadecimal $34 14,

What is another name for this
kind of operand?

A postbyte.

42 Lesson 5

as you go along, I'll tell that you can get out of any
EDTASM+ mode by hitting <BREAK>.

There is no requirement to manually number every line in
EDTASM+, saving you considerable time and energy.
Simply type and enter ‘I‘. The first available line number,
00100, is presented with the cursor ready for your
information. You may now type anything you like on this
line. Since renumbering and block search can be done, and
since the editing commands are identical to BASIC’s and
already familiar to you, you might even want to use the
editor as a low-grade word processor. For this lesson,
though, the point is to develop 6809 mnemonic code. To
practice, type something now . .. a few letters or numbers,
whatever, and hit <ENTER>. The information in that line
has been stored, and the next line, 00110, is ready for use.
Type some more characters and hit <KENTER> again.
Line 00120 is in place. At the start of a session, automatic
line insert mode starts at 100 and advances in increments
of ten lines. But you may change that any time. Tap
<BREAK>.

By typing and entering “I917”, the editor will begin
numbering lines at 917. Type and enter 1917. The line
00917 will be presented together with the cursor. Hit
<ENTER> a few times. Lines continue to be added in
increments of 10, so you should be seeing 00927, 00937,
00947, etc. Tap <BREAK> again.

You can change the line increment as well as which lines
you are inserting. Type and enter “11111,2”. Line 01111
will be displayed. Hit <ENTER>> a few times, and notice
that the line numbers do indeed increase by two at a time
rather than 10 at a time ... 01113,01115,01117, and so
on.

That's the essence of using the editor/assembler’s
automatic line numbering system.

To look at what you've done, you have to print the
information on the screen. To avoid conflicts in the single-
letter command system of EDTASM, the letter “P” was
chosento print to the screen. InEDTASM+, the seemingly
more logical “L”" doesn’t mean list; it means load from tape.
So to print a line on the display, simply enter the letter P
followed by the line number; leading zeros aren’t
important. For example, to display line 00110, just enter
P110. The line will appear. Try that.

There are many convenience features in the editor/
assembler, features which you will find reduces your
programming time. To print the next 16 lines on the screen,
for example, merely enter “P”. Even better are the three
symbols for first line, current line, and last line. First line is
represented by a number sign (also called the crosshatch or
pound symbol. I callit “pound” becauseit’s easier for me to
say than “crosshatch” and isn’t as ambiguous as
“number”.). Use a period to indicate current line. The
asterisk (the star) indicates the last line. Together with

BT

00/00 ABCPEF&
Emo//o []
I

e

5exe/7
0097 W

;

I

I
eI/ 7
’(:mv '7

o927

0937 B

e
‘3@’//77
oYY
0rr:3
s A

loo1oo ABCPEFE

}‘a*l
I

loci03 B
i

—
®Iio,i
locoro

locor s

0002

looor 3
®N10, 10
IR

O00/0

loooze

00080

those, the colon acts as the from-to delimiter, as in
“P100:200".

So to print the first line of the program on the screen, just
enter “P#”. Print the whole program by entering “P#:¥",
Find your last line by entering “P*”, Print the first three
lines by entering “P#:120”. Display from your current line
to the end of the listing by entering “P.:*’. With the
symbols # for first line, . for current line, and * for last line,
you've got complete control of your position within the
program with the least amount of typing.

The insert mode uses these convenience features, too.
Simply typing “I” requests the editor to insert a line,
starting wherever you are now, at the increment you last
used. “L,3” will insert a numbered line at your present
point, with an increment of 3 lines. “I#” will attempt to
insert a line after the first one in your program, again using
the last increment you specified.

Notice that, when you print your text on the display, there
are numbered lines with no infermation. The editor is quite
respectful of your requests, and, where you have indeed
entered an unused line, it will let it stand. Unlike BASIC,
re-entering a line number alone won’t get rid of it. With
EDTASM-, you must specifically delete unwanted lines
with the D command.

Delete also uses the editor’s set of convenience features.
You can delete any line by entering D and the line number,
such as D110. You can delete the first line using “D#”’, the
last line using “D*”, or the current line using “D.” or just
“D”. To delete a group of lines, say 1111 to 1115, enter
“D1111:1115”. Try that. D1111:1115 <ENTER>. To
delete the entire text so far, simply enter “D#:¥”. That’s
D#:*,

Now attempt to print a listing on your screen . . . enter “P.”
You'll get one of EDTASM’s many full messages, builtinto
assist your programming without constant reference to the
EDTASM+ manual. This message says, “BUFFER
EMPTY”. Since you have deleted the entire text by
entering “D#:*”, the editor is giving you the unequivocal
confirmation that the text buffer in fact contains no
lines.

Type “110,1”, and press <ENTER>. Line 10 will be
presented. Type a few characters, and enter this line. Do
the same for line 11, line 12, and line 13. Tap <BREAK>,
and print the listing by entering “P#:*”’. Now insert a line
between 11 and 12. Try “111,1” <ENTER>. NO ROOM
BETWEEN LINES, eh? Now try this: enter “N10,10”.
That’s “N10,10”. You're asking it to renumber, starting
from line 10, in increments of 10 lines. Print the listing by
entering “P#:*”. You should see lines 10, 20, 30 and 40.

Now try entering “I10”, as before. Still NO ROOM
BETWEEN LINES? Don’t forget that the last increment
specified is the one the program will use . . . and that

Learning the

Printing lines

Does the TFR {transfer) opcode
have a posthyte?

Yes.
* Describe the TFR postbyte.

The TFR postbyte is divided in
halfy the left {most
significant) half indicates
"from", the right (least
significant) half indicates
*to".

+ How many columms are there in
an assembly source listing?

Four.

% RBhat
coluan?

is found in the first

The source referenmce line

number.

£ What EDTASM+ command inserts
lines into the source listing?

The 1 command.

Hom is line 999 inserted
the source listing?

into

By entering 1999
* What does 11088,5 mean?

Insert lines into the source
listing, beginning at line 1000
and continuing in increments of
3 lines,

® How do you insert limes,

starting with 508, in incresents
of 58 lines?

1508, 50

+ What comsand displays source
lines on the screen?

The P command.

% How would you display source
line 497

By entering P4Q

6809 w

Convenience features

How would you display the
first source line?

By entering Ph

% How would you display the last
source ling?

By entering P#

How would you display sources
lines 4@ through 168@?

By entering P4@:1009

% How would you display the
entire source listing?

By entering Pl:#

+ What is the
*current line®?

syshbol for

The period (.)

* How would you ask to edit the
current linge?

By entering E. (E period)

How would you renumber the
listing, with the renumbering
beginning at line 1088 and
proceeding in increments of |
line?

N1@2e, i

+ What are the sysbols for first
line, last lime, and current
1ipe?

3 +# and . (pound, star and
period)

& If your source listing were in
increments of ten lines;, how
would you insert a line halfway
between your current line and
the next line?

By entering I.,35

44 Lesson 5

increment was specified as 10 when you renumbered the
listing. To insert lines between 10 and 20, how about
entering “110,2”. There you have line 12, ready to go. Tap
<BREAK> now.

The last of your most-used commands will be “E”, the key
letter for edit mode. E can be used only to edit a line at a
time, but the convenience features # . and * are always
available. Within the edit mode you have at your disposal
all the editing features of Extended Color BASIC. These
editing features are quite versatile, butI feel alittle outside
the scope of these lessons. There’s lots more to be done
with 6809 assembly language itself.

So here’s my proposal. At the end of this lesson, review
what has been done so far: binary and hex code, 6809
processor architecture, understanding mnemonics, and so
forth. Then spend some time with those few EDTASM+
source programs that have been presented so far. Instead
of loading them from tape, try typing them in; by the way,
use the right arrow to tab between columns rather than
using spaces between columns of source code. Also, turnto
your Extended Color BASIC manual and your EDTASM+
manual, and get familiar with those editing features. You'll
be using EDTASM+ for the duration of these tapes, and I
won’t be pausing as long when I describe commands. You’'ll
need to know those editor commands, so put in the time
learning its features now to make your work much easier
later.

Hello again. Now that you have a firm grounding in using
the editor/assembler, I've got to talk about some things
that don’t make me very happy. Those things make up the
jargon of microprocessor programming. It’s struck me that
the major barrier to programming in assembly language is
the terminology. The concepts themselves are simple —
sometimes far too simple and endlessly tedious for fun, but
simple nevertheless. But that simplicity also derives out of
the arbitrariness of their origins.

I don’t want to sound philosophical, but I've often been
asked the question “why”. Why “load” and “store” instead
of something like “input data” and “output data™? Why a
clumsy sounding word like “immediate”? How did the
binary values get chosen for the instructions? The answers
go back to the early days of computers and processors. In
the same way that a “word of eight binary digits” became a
“word of eight bits” and that in turn became known simply
as a “byte”, many of the terms involved in assembly
programming are just arbitrary, and sometimes tongue-in-
cheek, choices that stuck. Some were chosen because the
alternatives are worse . . . “load immediate”, for example.
“Load absolute” implies. a positive number so that’s out;
saying “load this number” or “load what’s next” sound too
silly for programming terms, even though a number sign
actually precedes the operand and it is what’s next.

The jargon can get overwhelming. If that weren’t so, you
probably wouldn’t be listening to me now. It’s not the
programming that’s hard; it’s learning the language, from
the descriptive terms through the programming actions.
Yet I believe jargon is really essential to facilitating
communication. .. so long as you know the jargon. A friend
of mine once wrote that we're not intimidated by admitting,
in pure, modern jargon, “I took a 747 non-stop”; we
wouldn’t think of saying “I flew inside a big silver bird who
never paused to eat or drink.”

There’s truth in that comment; in the earlier lessons, some
of you probably got tired hearing me say “American

This lesson begins the first of
two lessons on the critical
concest of addressing wodes.
The term sounds dry, the
learning isn't especially fun,
and the jargon is tryinp. Yet
addressing wodes pive the 6809
processor its power. Before you
begin, be sure you know the
basic terminology presented in
the previous lessons, and how to
use EDTASH+.

¥ What does ASCII mean?

fmerican Standard Code for
Information Interchange.

that is the term for an
accumulator obtaining
information from wmemory?

Loading.
tWhat is the term for an

accumulator placing information
in memory?

Storing.

tWhat is the term for ome
register placing inforsation in
another register?

Transferring.

& What is & word of eipht binary
digits?

A byte.

Learning the 6809 45

Addressing modes

% What is an addressing mode?
An addressinp wode is how the
sachine language oropram gels

its information.

% In the 6809, what is the size
of the data bus?

The data bus is 8 bils wide.

% In the 6889, what is the size
of the address bus?

The address bus is 16 bits
wide.

% When does a memwory cell appear
“live"?

When it receives its particular
16-bit binary number from the

oroLessor,

% Hw is the 16-bit binary
nusber sent by the processor?

By sending it on the address
bus.

t How does the wewory respond
when it receives iits address
from the processor?

By sending or receiving data.

How is data sent or received?

Along the data bus.

What is the size of the 688F's
data bus?

The 60889 data bus is 8 bits
wide.

What is an addressing mode?
An addressing mode is how the
machine language program pets

its information.

* Where does the processor get
its data?

From memory.

46 Lesson 6

Standard Code for Information Interchange”. You knew I
meant ASCII, I knew I meant ASCII, so why didn’t I say so?
I wanted you to know intuitively that this was a code for the
interchange of information, not just letters.

In a similar way, I was mystified by hockey terminology.
Here were tens of thousands of people understanding the
announcer’s every phrase, understanding the motion of the
puck as if it were their own heartbeats. I ate some popcorn,
velled a little, but mostly read the advertisements on the
sideboards. The game began to take on multiple levels of
excitement only when I began to understand its
language.

There are also are those who consciously attempt to alter a
language to simplify it, even to the point of creating new
languages in the process. BASIC was one of the successes,
Esperanto was one of the failures. The contemporary
Russian alphabet was a success, Chicago school of spelling
was a failure. I have an example relevant to this course. The
creators of the Z80 thought “load” and “store” were really
just directional variants of one concept, so they decided all
such actions would be called “loads”. That decision, while
advantageous for learning the Z80 processor, stands in the
way of someone being fluent on several microprocessors. It
has made the Z80 dialect different from the 6809 dialect,
where those variants were even further refined into
“loads”, “stores”, and “transfers’.

P'm not stalling here, I'm just trying to prepare you for this
lesson. The terms I am going to introduce all have specific
meanings, and some are quite elegant summaries of
complicated concepts. You already know one of them —
the indexed addressing mode. There’s alotlike that coming
up, so take your time; don’t rush. Review when you need to.
You hired me to do this job, after all, and I'll patiently re-
explain as often as you like.

The topic is addressing modes. That’s how the processor
obtains the data it needs to complete a given instruction.
For this topic, I would like you to follow along with me in the
documentation; these things are often easier to see than to
say, especially when it comes to mnemonics. You'll also
need to open your MC8809E data booklet to page 15, and
have a marker on page 28.

While you’re finding your place, and before actually
discussing addressing modes, I'd like to recap the concept
of addressing itself. The 6809 microprocessor has an 8-bit
data bus and a 16-bit address bus. This means that it has 24
electrical connections to an external line of memory cells. A
memory cell in this line is activated when it receives its
particular 16-bit binary number from the processor on the
address bus. Each memory cell is electrically connected in
such a way that it — and only it — can respond to that
‘binary address. When it responds, data is sent from or
received by the 6809 along the 8-bit data bus. 6809 sends

the address, memory responds by sending or receiving the
data.

You don’t need to know much about this electrical process;
for programming purposes, you take it on faith that the
machine’s designers have organized the conhections
properly so that when your program wants information
from memory location $1234, for example, memory
location $1234 will respond appropriately and provide
your program with that information. Later you’ll learn a
little more about dealing with computer input and output,
for which a touch of electronics will enter into the
discussion.

As for addressing, you know now that the processor takes
both its program and its data from memory, and stores its
data in memory. Up to this point, I've presented concrete
examples of specific memory uses — to store and execute
the opcodes and operands of a program, and to store a table
of data. I don’t feel that learning through concrete example
alone will broaden your programming abilities, so it’s on to
the discussion of the addressing modes. If at any point you
get lost in the jargon or feel shaky about this, remember:
AN ADDRESSING MODE IS HOW THE MACHINE-
LANGUAGE PROGRAM GETS ITS INFORMATION.

L.ook at page 15 in the MCG809E data booklet. As noted,
there are seven major categories of addressing modes in
the 6809: inherent, register, immediate, extended, direct,
indexed, and relative. The next two lessons will cover all
seven modes; I'll save for later the three variants called
extended indirect, indexed indirect, and program counter
relative. Throughout this discussion, please remember
that “opcode” means the machine-language instruction,
and that “operand” means its data.

Inherent Addressing

Inherent addressing is the simplest mode. In this mode, all
the information needed to complete the processor
instruction is already present in the instruction itself. In
other words, the address of the data needed to complete
the instruction is inherent in the address of the
instruction’s opcode, which the processor’s already got.
You've used two of these inherent instructions up to this
point: Clear A Accumulator (mnemonic CLRA, hex code 4F)
and Return from Subroutine (RTS, $39), both of which are
inherent addressing. They have all they need to get the job
done. Other examples of this mode are Multiply A
Accumulator times B Accumulator (MUL, $3D). There’s
also Complement A Accumulator — that is, turn all zero
bits to one, and all one bits to zero (mnemonic COMA, $43),
and even No Operation (N-O-P or NOP, $12), which does
nothing but waste time. If this last one sounds funny to you,
you’ll later discover how important it can be to waste time,
since machine language actually moves too fast for some
programming.

Learning the O8OF

Inherent addressing

% ghere does the orocessor pet
its program?

From memory.

* Hw does the processor
distinguish program from data?

By the context.
tWhat is the term for how a
machine language orogras pets
its information?

fin addressing mode.

+ What is the ters for a machine
language instruction”

fAn opcode.

¢ What is the term for an
opcode's data?

fn operand.

What addressing mode includes
the information necessary ic
complete the instruction as part
of the instruction itselé”

Inherent addressing.

Bive examples of inhevrent

addressing.

Any of the following will do
{this isn't a complete list):

CLRA, CLRB, RYS, Mk, COMWR,
COMB, MNOP, ASLA, AGLE, ASRA,
ASRB, DECA, DECB, INCR, INC,
LSLA, LSLB, LSRA, LSRB, NEGA,

NEGB, ROLA, ROLB, RORA, 30RB,
TSTA, TSTE.

% What is inherent addressing?

Ivherent addressino is an
addressing mode in which the
information needed to complete
an instryction is part of the
instruction itself.

47

Register & Immediate addressing

® What is repister addressing?

Register addressing is an
addressing mode in which the
information needed by the
prograg is woved from one
register to another.

* Give two examples of repister
addressing.

TFR and EXB. PSH and PUL can be
considered repister addressing.

¥ What addressing mode invelves
movement of data from register
to register?

Register addressing.

What addressing mode finds the
data at the address immediately
following the instruciion
itself?

Immediate addressing,

% Bive examples of immediate
addressing (make up operands for
your examples).

Any of these will do: LDX
#3008, SUBB #341, CMPX 440800,
LDA #$12, LDY #$1234, Cmpy
#CCCC, etc,

* What is imsediate addressing?

fin addressing mode in which the
data to be used is found at the
address imeediately following
the instruction itself, in
program order,

¥ What is extended addressing?

fn addressing mode in which the
two bytes following the oprode
are the address of the data to
be used to complete the
instruction.

In the instruction LDX $3456,
where is the data?

The data is found at address
$3436.

48 Lesson 6

Register Addressing

The second mode is Register Addressing. In this case, the
information needed by the program is transferred from one
register to another. For example, the familiar Transfer
Value from A Accumulator to B Accumulator (TFR A,B) is
Register Addressing. This instruction is two bytes, the
opcode meaning “‘transfer from register to register” ($1F)
and the operand — called a “postbyte” — identifying which
goes where ($89 for transferring A to B). Another example
of register addressing that you have used is Push Y and Pull
Y ($34 $20 and $35 $20). New examples include Exchange
Registers (two bytes with an opcode of $1E), and all the
other Push and Pull instructions (opcodes $34 and $35,
respectively).

Don’t be confused by the MC6809E data booklet; Register
Addressing is easy. The data booklet first suggests that
Register Addressing can be thought of as either distinct
from or the same as Inherent Addressing. I leave that up to
you, because the MC6809E data booklet can’t make up its
mind, either. The booklet clearly distinguishes between
Register and Inherent Addressing on page 15, but calls
them both “Inherent” on pages 28 and 29. To assist in the
confusion, it even calls one group “Immediate” on page 31!
I prefer to consider Register Addressing as distinct from
Inherent Addressing. The opcode is all the information in
the Inherent mode, but in Register Addressing, the data
necessary to complete the instruction is described by the
postbyte. If I've just confused you, then you may, as the
judge says, disregard the previous remarks.

To recap: Inherent Addressing is a mode in which the
address of the operand also addresses the data needed to
complete the instruction, since the data is an inherent part
of the instruction itself. Register Addressing is similar to
Inherent addressing, and often includes a second byte
known as a postbyte to furnish additional information
needed to complete the instruction. Inherent and Register
Addressing include Clearing, Incrementing, Decrementing
and other internal single-register commands; Exchanging,
Transfering and other register-to-register commands;
Stack Pushes and Pulls; Subroutine Returns; and one-of-a-
kind, specialized arithmetic functions such as Multiply,
Sign Exchange, and Add-B-Register-to-X-Register.

If you wish, review Inherent and Register Addressing in
your documentation. For review, turn the tape off now.

Immediate Addressing

Immediate Addressing is very transparent. The data to be
used is found at the address immediately following the
instruction itself, in program order. Among examples you
have used already are Load X Register with value $3000
(written LDX #$3000), and Subtract the value $41 from B
Accumulator (written SUBB #$41), and Compare X
Register with $0800 (written CMPX #$0800). Other

examples include such logical instructions as AND A
Accumulator with an immediate value, OR B Accumulator
with an immediate value, Exclusive OR, and so forth;
arithmetic such as ADD A Accumulator and SUBtract A
Accumulator; and the now-familiar Load A, Load B, Load
X, Load Y, etc., with an immediate value. The mnemonic
notation for Immediate Addressing always includes the
number sign in front of the operand, which tells the editor,
“use this data!”

Extended Addressing

The word “Extended” implies reaching out, and Extended
Addressing is just that. In Extended Addressing, the
information following the opcode (that is, following the
machine-language instruction itself) is not the data. What
follows the opcode is the address in memory where the data
can be found, rather than the actual data to be used. Here’s
an example. You have used LDX #$3000, which meant Load
X with the immediate value $3000. In Extended
Addressing, the notation is LDX $3000. Very similar, but
with an entirely different meaning; glance at the
documentation so you can see what I'm describing. LDX
#$3000 is immediate addressing; LDX $3000 does not
contain the number sign in front of the operand. That
means that $3000 is not the data, but is the address in
memory where the processor will find the data to be loaded
into X.

Did a question come tomind? How canthe 16-bit X register
load the 8-bit data at address $3000? Since the data at
address $3000 is only an 8-bit word, and since the X
register requires 16 bits, the instruction decoder sees to it
that the process is completed correctly. The information
loaded into X isinfact all 16 bits. The first byte comes from
the address specified by the operand (in this case $3000),
and the second byte comes from the next address (in this
case $3001), in order.

Extended addressing is used for both 8- and 16-bit
registers. If the command were LDA $3000, then, the
instruction decoder would make sure the 8-bit value at
$3000 was loaded into the 8-bit A Accumulator.

Here are two concrete examples:

® Theinstructionis LDX$1234. Address $1234 contains
$AB, and address $1235 contains $FF. After executing the
instruction LDX $1234, the X register will contain the value
$ABFF.

® The instruction is LDB $8888. Address $8888
contains $190. After executing the instruction LDB $8888,
the B Accumulator will contain the value $10.

In all this, the 6809 processor’s task is to be smart enough
to place the information found at the specified memory
location into the correct registers, making sure the number

Learning the

Extended addressing

What kind of addressing mode
is LDX $34367

Extended addressing.

In the instruction LDX #$3456,
where is the data?

The data is ismediately
following the instruction; that
is, the data is $3436.

What kind of addressing mode
is LDX #$3456?

Immediate addressing.

* What kimd of addressing wmode
is LDA $1234?

Extended addressing.

t The B repister contains $41;
the A register contains $00;
memory location $1111 contains
$45. What are the contents of
the A accumulator after each of
the fllowing instructions are
executed?
LDR 849
LDA $1111
TFR B,A

$49; $45; $41

& What addressing modes are LDA
#3495, LDA $1111 and TFR B,A?

Immediate, extended and register
addressing.

% What is an addressing mode?

How the machine language program
gets its information.

What ASCII characters are
represented by 649, $43 anc
$417

I, Eand A

6809 w

Direct addressing

* What is direct addressing?

Direct addressing is an
addressing mode where the direct
pape register and the value
following the opcode are
cosbined to forw an address. At

that address is found the data
to complete the instruction.

& The DP repister is set to $CC
amd the instruction LDA ($80.
Where is the data?

At address $CCBO.

t The DP repister is set to $88
and the instruction is LDA ($CC.
dhere is the data?

At address $88CC,

*# For each of the following
examples, identify the
addressing mode, and tell
specifically where the data is
found. Assume the direct page
register is set to $AG,

¥ LDA #%4]

Imediate; following the oprode
LDA.

LDX $3456

Extended; at addresses $3456 and
$3457 {X needs two bytes).

& CLRA

Inherent; as part of the
instruction.

& STA (s
Direct; at address $AGCC.
* TFR X, Y

Register; as described by the
postbyte,

+ CHPA $789A

Extended; at address $7B94.

50 Lesson 6

of bytes taken from sequential memory locations matches
the size of the register requesting the data.

Direct Addressing

Direct Addressing obtains data for program use with great
speed and memory economy. It depends on the
organization of memory into pages. A “page” is a specific
term in assembly language programming, meaning those
256 contiguous bytes of memory whose most-significant-
byte is in common. For example, page $00 contains the 256
addresses $0000 to $OOFF; page $01 contains addresses
$0100 to $01FF; page $FE contains addresses $FEOO to
$FEFF. The 6809 and other 8-bit processors have a total
256 pages of 256 bytes.

Return to the MC6809E data booklet, and turn to Figure 4
on page 5. That’s the 6809 architecture you've been using.
Up to this point, you have been introduced to all registers in
the 6809 except one: the Direct Page register. Into the
Direct Page register is transferred the most-significant
byte of an address. In earlier processors, the direct page
was fixed (usually to page $00), and consequently there was
no Direct Page register. But the 6809 has this Direct Page
register because its Direct Addressing can be done
anywhere in memory.

So what’s the point? First of all, each instruction using
Direct Addressing takes one less byte of memory than
Immediate or Extended Addressing. Since the most-
significant byte is always ready for use in the Direct Page
register, that byte need not be stored in program memory
as part of the operand. Secondly, since Direct Addressing
fetches one less byte from memory, the instruction can be
completed faster.

The mnemonic notation for Direct Addressing uses the
“less than” sign in front of the operand. For example, with
the Direct Page set to $AA, the instruction LDA <$80 would
load the A accumulator with the value found at memory
location $AA80. Beyond the economy of speed and
memory, however, Direct Addressing is identical in
principle to Extended Addressing: the desired data is not
the operand itself, but at the memory location specified by
the operand.

Examples

To review some examples of immediate, extended and
direct addressing, follow me in your documentation
booklet:

LDX #$1234 isimmediate addressing, loading the value
$1234 into the X register.

LDX $1234 is extended addressing, loading the value
found in memery at addresses $1234 and $1235 into the X
register.

$Pl mears Loap B DIREST...
from where?

LDX <$34 is direct addressing; with the direct page set
to $12, the value found at addresses $1234 and $1235 is
loaded into the X register.

TFR Y,X is register addressing; if the value of the Y
registeris $1234, then the X register will be loaded with the
value $1234,

LDB #$56 is immediate addressing, loading the value
$56 into the B Accumulator.

is extended addressing, loading the value
into the B

LDB $56
found in memory at address $0056
Accumulator.

LDB <$56 isdirect addressing; with the direct page set to
$00, the value found at address $0056 is loaded into the B
Accumulator.

TFR A,B is register addressing; if the value of the A
Accumulatoris $56, then the B Accumulator will be loaded
with the value $56.

CMPY #$789A is immediate addressing, comparing the
value of the Y register with the actual value $789A.

CMPY $789A is extended addressing, comparing the
value of the Y register with the value found in memory at
locations $789A and $789B.

CMPY <$9A is direct addressing; with the Direct Page
register set to $78, the values found at $789A and $7898
are compared with the Y register.

CMPA #$BC is immediate addressing, comparing the
value of the A Accumulator with the actual value $BC.

CMPA $BC is extended addressing, comparing the value
of the A Accumulator with the value found in memory at
$00BC.

CMPA <$BC is direct addressing; with the Direct Page
register set to $00, the value found at $00BC is compared
into the A Accumulator.

To review the major points: Addressing is the manner in
which the program obtains the data it needs. Anopcodeisa
machine language instruction. An operand is the
information needed to complete an instruction.

The Inherent Addressing mode contains only an opcode.
That opcode contains sufficient information to complete
the instruction. Because there is no cperand needed to
provide additional data, the data is inherent in the address
of the instruction.

The Register Addressing mode contains an opcode and
usually a postbyte. The opcode tells the processor which
kind of instruction will be executed, and the postbyte

Learning the

Examples of addressing
DY #6CBA9

Immediate; the two
fallowiag the opoode LDY.

bytes

57X (¢

Direct: at address $A0B@ and
$A0R1 (X is - - bytes).

+ CeB

Inherent: as osrt of the
instruction itself,

What is an addressi=n wde?

fin addressing mode 15 --w the
machine language orograe gets
its inforsation,

t What is inherent addressirg?

Inherent addressing is an
addressing mode in which the
information needed to complete
an instruction is part of the
instruction itself.

& What is register addressing?

Register addressing is an
addressing mode in which the
information needed by the
program is soved from ome
register to another,

t What is immediate addressing?

fin addressing mode in which the
data to be used is found at the

address immediately following
the instruction itself, in
programs order,

t What is extended addressing?

An addressing mode in which the
two bytes following the cpoode
are the address of the data to
be wused to complete the
instruction.

6809 =

Summary
What is direct addressing?

Direct addressing is an
addressing wode where the direct
page register and the valee
following the opcode are
cosbined te fore an adiress. At
that address is found the data
to complete the instruction.

% What are the BHB8Y's 16-bit
registers?

The X and Y registers, the 5 and
U stack pointers, and the PC
{orogras counter). The D
accumulator combines the A and B

accumulators imte a 16-bit
register,
£ What are the 6B29's 8-bit

registers?

The A and B accumelators, the CC
{cordition code) register, and
the DP (direct page) register.

* Where does the processor get
its data?

From semory.

Where does the processor get
its progras?

Froe msesory.

* How does the processor
distinguish progras from data?

By the context.
* ¥hat is the term for how a
wachine language progras gets

its information?

An addressing mode,

52 Lesson 6

defines which registers will be used to complete the
instruction.

The Immediate Addressing mode contains an opcode and
one or two bytes of data. The opcode tells the processor
which kind of instruction te execute, and the bytes of data
are the specific information that is used by the processor to
complete the instruction.

The Extended Addressing mode contains an opcode and
two bytes of data. The opcode tells the processor which
kind of instruction to execute, and the bytes of data are
combined to create an address. Atthat address is found the
data used by the processor to complete the instruction.

The Direct Addressing mode contains an opcode and one
byte of data. The opcode tells the processor which kind of
instruction to execute. The byte of datais used as the least-
signficant-byte of an address, and the processor’s internal
Direct Page register is used as the most-significant byte. At
the resulting adddress is found the data used by the
processor to complete the instruction.

Please don’t consider addressing modes just to be picky
stuff. Virtually all the programming power of the 6809
processor comes from these addressing variants. 1 hope
you will review this lesson several times until each of these
five addressing modes begins to make sense.

The topic is once again addressing modes, those ways in
which the program gets the data it needs to complete a
machine-language instruction.

I've described five modes so far: Inherent Addressing, an
instruction which is essentially complete in itself; Register
Addressing, where the opcode describes the instruction,
and the postbyte indicates which registers are used;
Immediate Addressing, where the necessary data
immediately follows the opcode, within the program;
Extended Addressing, in which the two bytes following the
opcode are used to form the address where the data is
located; and Direct Addressing, in which the one byte
following the opcode is combined with the one-byte
contents of the Direct Page register to form a memory
address where the data can be found.

The remaining modes are Indexed and Relative
Addressing, the topics of this lesson. As an aside, I know
these two lessons are a little dry; I promise to do better
soon, when you get back to hands-on programming.

Actually, you've already done Indexed Addressing. It’s the
most versatile way of getting data to your program, and it’s
quite easy to use. Any apparent complexity arises solely
out of the incredible number of combinations you can make
using this mode, each of which has its own jargon. The one
unequivocal thing you can say about Indexed Addressing is
that the operand in some way identifies the address at
which the processor will locate the data it needs to
complete the instruction. Don’t forget during this that
when I say something like “locate the data”, I'm talking
about loading, storing, comparing, adding, etc. — any
machine language instruction that uses data to do its
work.

In general, Indexed Addressing allows the processor to get
data from memory by calculation. The memory location for
that data is calculated by combining the value of a 16-bit
register with an offset value. The offset can be either an
actual numerical value or the value of an accumulator

Learning the

You wmight be losing patience
with these orogrameed learning
sections. Keep up with them.
Now they bepin to take on more
importance as the nusber of
concepts you need to resember
increases, Starting with the
familiar...

t What is an addeessing mode?

An addressing wode is how the
machire language program gets
its information.

% Name the addressing wodes
represented by these four
instructions: CLRB, LDR #$99,
LDX $@3mA, STB (833

Inherent;
direct.

immediate; extended;

t In inrherent addressing, where

is the data?
As part of the instruction.

In immediate addressing, where
is the data?

Following the opcode in wemory.

* In extended addressing,
is the data?

where

At the address specified by the
opcode.

6807 =

Indexed addressing

¥ In direct addressing, where is
the data?

At the address specified by the
direct page concatenated with
the information following the
oncode,

+ In all cases, where is the
data?

In memory.

In indexed addressing, data is
found at an address in memory.
What two things are necessary to
locate the data?

A 16-bit register and an
offset.

% What are the 16-hit registers
in the 6809 processor?

% ¥, PC {propram counter), §
thardware stack), ard U {user
stack).

What are the three kinds of
offsets used in indexed
addressing?

lerc offset, constant offset,
and register offset.

* Given a vegister and an
offset, how are they used?

The value of the offset is added
to the value of the repister to
calculate the address at which
the data can be found.

If the X register is $3600 and
the P register is %41, where
does the instruction LDB (X fiml
its data?

At address $3088,

What kinmd of addressing is
this?

lero-offset indexed.

54 Lesson 7

register. You've seen the usefulness of this method in that
little code encryption program. The X register was set to
the memory location at the start of the encryption table,
and the offset added to pick your way through the table was
in the B register.

These Indexed Addressing methods are called Zero-Offset
Indexed, Constant-Offset Indexed, and Accumulator-
Offset Indexed. More jargon. Zero-Offset Indexed means
that what you see is what you get; the value in the registeris
the address of the data. Constant-Offset Indexed means
that you’re using a fixed constant — that is, a number other
than zero — to add to the register’s value in order to locate
the data you need. Accumulator-Offset Indexed means
that you can use the A, B, or combined D accumulator to
give you in effect a variable offset. Add that variable offset
to the register's value and you locate the data in
memory.

Indexed Addressing has other features. One of these is
ostentatiously called Auto Increment/Decrement Indexed.
It means that the register you're using to pinpoint a
memory location may be incremented or decremented as
the instruction is performed. As in the memory-to-screen
message program you worked with earlier, this way of using
Indexed Addressing makes transfer of information very
quick and easy, requiring no additional steps to bump the
register values along to the next byte in memory.

Although that program was used to transfer information
just one byte at a time, in another situation you might want
to use two-byte values. Therefore, the auto increment or
decrement can be by either one byte as you've done, or by
two bytes, further increasing the programming flexibility.
For example, if you had stored a table of 16-bit integers,
you would want to step through the table two bytes at a time
to access its information.

The Auto-Increment/Decrement Indexed mode has one
quirk you have to keep in mind. When your memory pointer
register is to be automatically incremented, that
incrementing is done after the rest of the instruction is
completed. But when a pointer register is decremented,
that is done before the instruction is performed. Say that
the value of the A Accumulator is to be stored at the
memory location pointed to by Y. If an auto-increment is
requested, A is first stored at Y, and then Y is incremented.
However, if auto-decrement is desired, Y is first
decremented, then A is stored at Y. This is a little awkward
at first, but you’ll find the programming makes sense to do
that way. More on that later.

Now it’s time to talk about mnemonics, which in this case
will help make sense of Indexed Addressing. Please follow
along with me in your documentation, and also have ready
pages 16 and 17 of your MC6809E data booklet.

The format of the operand for Indexed Addressing is
consistent. The offset is identified, followed by a comma,

and then the pointer register is named. I'm going to
describe some variants on just one possibility, storing the A
Accumulator at memory indexed by X:

Simply to store the A Accumulator at memory indexed by
X, use the zero-offset indexed mode. It is written:

Mnemonic: STA X
Read:
Store A, zero-offset to X
Process:
1. Store A in memory location (X)
2. Change N and Z flags, reset V flag
3. Go on to next instruction

To store A at memory indexed by X plus an offset of $10
bytes, use the constant-offset indexed mode. It is
written:

Mnemonic: STA $19.X
Read:
Store A, constant offset $19 to X
Process:
1. Calculate X + $18
2. Store A in memory location (X + $1§)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, plus an offset of
whatever value is in the B Accumulator, use the
accumulator-offset indexed mode. It is written:

Mnemonic: STA B,X
Read:
Store A, accumulator B offset to X
Process:
1. Calculate X + B
2. Store A in memory location (X + B)
3. Change N and Z flags, reset V flag
4. Go on to next intruction

Indexed examples
If the X repister is $3008 and
the A register is $41, where
does the instruction LDB $9C,X
find its data?

At address $389C.

¥ What kimd of addressing is
this?

Constant-offset indexed.

What is the constant in the
previous example?

$9C is the constant.

% If the X register is $3008 and
the A repister is %41, where
does the instruction LDB A, X
find its data?

At address $3841.

What kind of addressing is
this?

fAccumulator—offset indexed.

What happens when LDA X is
executed?

The A accusulator is loaded with
the value found in wmemwory
indexed by X.

% What happens when LDA X+ is
executed?

The A accumulator is loaded with
the value found in wemory
indexed by X, and then X is
automatically incresented by
one,

* What addressing mode is this?

Auto-increment /decrement indexed
{specifically, auto-increment
accumulator-offset indexed).

What happens when 1DR ,-X is
executed?

The X register is decremented by
one, and then the A accumulator
is loaded with the value in
wemory indexed by the X
register.

Learning the w 55

Indexed examples

¥ What
this?

addressing wode is

Auto-increment /decrement indexed
{specifically, auto—decrement
accumulator-offset indexed).

What addressing wodes are
represented by these three
instructions?

B X

LDB %19,

LDB A

lerc-offset indexed, constant-
offset indexed, and accumu-
lator-offset indexed.

& What
represented
instructions?
LDR X+
LDA $19.%+
LR B, X+

addressing modes are
by these three

lero-offset auto-increment
indexed, constant-offset auto-
increment indexed, accumulator-
offset auto-increment indexed.

* Read the following wnemonics:
£ 51R X

Store f, zero offset to X,
* 5TA 410,

Store A, constant offset $1@ to
X

% STA B, X

Store A, accumulator B offset to
xl

STA X+

Store A, zero offeet to X
incresent X by one.

£ STA ,~X

Decrement ¥ by one;, store A,
zero offset to X.

¥ STA $9AB, -

Decrement X by one, store 4,
constant offset of $9AB to X,

56 Lesson 7

To store A at memory indexed by X, and then to
automatically increment X by one byte, use the zero-offset
auto-increment/decrement indexed mode. It is written
simply:

Mnemonic: STA X+
Read:
Store A, zero offset to X,
increment X by one byte
Process:
1. Store A in memory location (X)
2. Make X = X + 1
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, after automatically
decrementing X by one byte, use the zero-offset auto-
increment/decrement indexed mode. It is also simpler to
write than to describe:

Mnemonic: STA X
Read:
Decrement X by one byte, store A,
zero offset to X
Process:
1. Make X =X - 1
2. Store A in memory location (X)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, and following that to automatically increment X by
one byte, use the constant-offset auto-increment/
decrement indexed mode. It is written:

Mnemonic: STA $9AB, X+
Read:
Store A, $9AB constant offset to X,
increment X by one byte
Process:
1. Calculate X + $9AB
2. Store A in memory location (X + $9AB)
3. Make X = X + 1
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, after decrementing X by one byte, use the constant-
offset auto-increment/decrement indexed mode. It is
written:

Mnemonic: STA $94B, - X
Read:
Decrement X by one byte, store A,
$9AB constant offset to X
Process:
1. Make X =X - 1
2. Calculate X + $9AB
3. Store A in memory location (X + $9AB)
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of ‘

whatever value is in the B accumulator, and to
automatically increment X by two bytes, use the
accumulator-offset auto-increment/decrement mode. It is
written:

Mnemonic: STA B, X++
Read:

Store A, accumulator B offset to X,
increment X by 2 bytes

Process:

1. Calculate X + B

Store A in memory location (X + B)
Make X = X + 2

Change N and Z flags, reset V flag
Go on to next instruction

N B0 N

To store A at memory indexed by X plus an offset of
whatever value is in the B accumulator, after automatically
decrementing X by two bytes, use the accumulator-offset
auto-increment/decrement mode. It looks like this:

Mnemonic: STA B,--X
Read:

Decrement X by 2 bytes, store A,
accumulator B offset to X

Process:

1. Make X =X - 2

2. Calculate X + B

Store A in memory location (X + B)
Change N and Z flags, reset V flag
Go on to next instruction

(B0 - N % }

Indexed examples
¥ STA B, X4+

Store A, accumulator B offset to
X, increment X by two.

¥ STA B,~-X

Decrement X by two bytes, stare
A, accumulator B offset to X,

* What addressing wmodes are
represented by these five
instructions:

CLRR

LD #%12

LDB #1234

LDB (%34

DB $i2,X

Inherent, immediate, extended.
direct, indexed {constant-offset
indexed).

* BRA seans branch aiways. What
kind of addressing does BRA $FD
indicate?

Relative addressing.

* Relative addressing is
relative to what?

The program counter (PL).

+ What does the program counter
{PC) indicate?

The memory address containing
the next instruction the
processor is to act upon.

* What is the relative position
of the PC?

Since “relative” means relative
to the position of the PC, then

the PC is always relative
position 9.
* What determines a number’s

sign (positive or negative) in
binary?

The sign bit.
* Which bit is the sign bit?

The leftmost bit.

Learning the 6&)9 57

Relative addressing

+ When the leftmost bit is a
zero, what is the number's
sign?

Positive.

_ ¥ When the leftmost bit is a
one, what is the number's sign?

Negative,

What is the binary equivalent
of $C77?

$C7 is binary 11080111,

+ Is $C7 positive or negative?
dhy?

Negative, because the leftmost
bit (the sign bit) is a one.

* What is $7C in binary. Is $7C
positive or negative? Mhy?

$7C is @itiliee. It is
positive, because the leftmost
bit (the sign bit) is a zero.

What is the relative position
of the byte in mesory directly
preceding the PC?

Relative position -1, or $FF.

¥ What is the relative position
of the byte in memory directly
following the PC?

Relative position 8i.
¥ Why does $FF mean -1?

Because the leftmost bit (the
sign bit) is a ore.

¥ What does BRA mean?
Branch always.

*+ The opcode for BRA is $20.
When the instruction $28 FE is
executed, what are the relative
positions of opcode BRA and
operand $FE?

Operand $FE is at relative
position $FF (-1) and opcode BRR
is at relative position §#FE
(-2},

58 Lesson 7

As you can see, even storing the accumulator to memory
indexed by X can be done a number of ways. A complete list
would include six more variants that I haven't described;
you’ll have a chance to try these modes in your workbook.
This is a good time to do that if you would like, or just to
take a break and review.

If you've been reviewing this lesson, you probably have an
idea that indexed addressing is very flexible and not nearly
so difficult as the jargon suggests. And, if you've had a
glance at your MC6809E data booklet, then you know
there’s quite a bit more to the subtlety of indexed
addressing. Even so, I would like to leave that topic for now
and turn to Relative Addressing.

Relative Addressing is a good term, one of the best pieces
of jargon you’ll encounter. When Relative Addressing is
employed, the data needed to complete an instruction is
found at a location in memory relative to the present
position of the Program Counter. Specifically, Relative
Addressing is used to identify places in memory to which
the program itself will branch.

To use Relative Addressing, though, you have to know
about signs. I've not mentioned negative numbers in
conjunction with binary or hexadecimal notation, and
that’s because the representation used is different from
that in the decimal system. In the decimal system, of
course, a negative 10 is simply written with a minus sign, -
10. Computer binary numbers are called signed numbers,
because the sign for positive or negative aspect is in fact a
part of the number itself. That’s simpler than it sounds.
Where the sign of a number is unimportant, all the binary
digits have the same meaning, as you've experienced so far.
However, certain programming conditions — Relative
Addressing is just one of them — need to know not only the
length of a branch, but also which direction the branch
goes. That is, how far will the program counter move, and
will it move forward or backward, relative to the current
position in the program?

To sign a number in binary, a unique procedure is used. If
the most signficant bit — that is, the leftmost bit — of the
number in question is zero, then the number is positive; if
the most significant bit is one, then the number is
considered negative. Remember, the sign bit is ignored
except when it is needed.

You have used a signed number in the programming you’ve
done this far (in fact, a negative signed number), but you
probably haven’t noticed. Think back to the program which
moved information from memory to the screen; there was
an instruction that read “Branch if Not Equal” to a part of
the program labeled “LOOP”. At the time, I hustled you
past that point, explaining only about the condition code
register, how that branch would take place if the zero flag
was not set, and that this was sort of like a BASIC GOTO. I
didn’t mention anything about the operand of that branch
instruction.

&-BiT su,uw}
INTESERS
ol 7[7]e] el /]/]

=$op
(n posthve nomber.
decimal /07)

(A 17Te] o]]/]
ER 133
(& negartve nomber,
decimal ~21)

1o~ BAT SNED
INTECERS

el I I Tol7e]elo]7Te] /17 [o]
= 45 =4 i &
(mposrive wamber, decinat 26830)

AaEunnEnCEeREnneE
=4 P >4 | &
(& reqatre. nber, decomal — 8938)

fmq%

—

3

Turn to your documentation. That program is printed with
this text; this time, though, the hex code appears with it.

420 QA1 GRG $4Q00
400@ 8E 2aed eaila LDX H#$Q80a
4Q3 1QBE @402 aR1z2@ LDY #$Q420
40@7 A6 aa Qal13@ LOOP LbA . X+
4a@3 A7 AR Qa1 4@ 8TA s Y+
42@E 8C a8a@ 2a1sSe CMPX #5080
4@2E 26 F7 aaiea BNE Loop
4@1@ 39 Qai7a RTS

Q0@ aa18@ END
222 TOTAL ERRORS
LOOP 47

It should look familiar. Incidentally, the load immediate
instructions in lines 110 and 120, and the zero-offset aute-
increment/decrement indexed instructions in lines 130
and 140 should be particularly understandable this time
round. But my interest is line 160. There’s that Branch if
Not Equal to LOOP. Hex $26 is the opcode for Branch if
Not Equal. $F7 is the operand. How does $F7 describe a
program branch?

The answer is to write it in binary. $F7 translates into 1111
0111. The most-significant bit, bit 7, is a one, meaning (for
Relative Addressing purposes), this is a negative number.
This is a backwards branch. Translated into a decimal
number, this is -9. If you don’t have a decimal/hex
programmier’s calculator, you can refer to the chart at the
end of the documentation, or just count backwards . . . $00
is).$FFis~1.$FEis—2. $FDis-3. $FCis—4.$FBis—b. $FA
is —6. $F9 is —7. $F8 is —8. $F7 is -9. There it is. -9.

The backwards branch is made from the Program
Counter’s present position. Recall that several lessons ago
I said that the Program Counter points to the next
instruction to be executed. Look at the listing again. The
nextinstructionisinline 170, Return from Subroutine. The
Program Counter is pointing to RTS when the Branch on
Not Equal instruction is in progress. This is the starting
point, relative position $00. You’ll be counting backwards
through the second and third columns, containing the
hexadecimal opcodes and operands. Count backwards in
the hex data with your finger. $00 points to Return from
Subroutine, hex code $39. Now start counting. $FF, $FE ...
that’s the beginning of the Branch on Not Equal
instruction. $FD, $FC, $FB. .. that puts you at the beginning
of the Compare X opcode. $FA, $F9 . . . that's the Store A
command. $F8, $F7 ... and there it is, the beginning of the
Load A instruction, right on the line with the label
“LOOP”.

Try it again, just to be certain. Start with the instruction
Return from Subroutine as relative position $00, and count
backwards through the bytes of data. $¥F, $FE. $FD, $FC,
$FB. SFA, $F9. $F8, $F7. The relative branch brings you
back to the label “LOOP”.

There’s another way to do this, actually the way that the
6809 itself does it. The 6809 adds the relative branch
operand to the address pointed to by the Program Counter.

Learning the

Branching

+ When $2@ FE is executed, what
happens to the program counter?

It is moved to relative position
$FE, that is, -2,

What is found at relative
gosition $FE (-2)7

The opcode BRA.

* dhat is the complete

instruction found at relative
position $FE?

Branch always to relative
position -2, BRA $FE, or $20
FE.

Summarize what happens when
the program encounters the
instruction BRA $FE,

The progras branches to relative
position $FE, that is, back to
the instruction BRR $FE, This
is an endless loop.

¥ What is inherent addressing?

Inherent addressing is an
addressing mode in which the
information needed to complete
an instruction is part of the
instruction itself.

* What is register addressing?

fn addressing mode in which the
information needed by the
program is moved from one
register to another.

% What is issediate addressing?

fin addressing mode in which the
data to be used is found af the
address immediately following
the instruction itself, in
progras order.

* What is extended addressing?
fin addressing mode in which the

twe bytes following the oprode
are the address of the data to

be used to complete the
instruction.
6809 9

Long and short relative

% What is direct addressing?

An addressing mode where the
direct page register and the
value following the opcode ave
combined to fors an address, At
that address is found the data
to complete the instruction,

% What is indexed addressing?

An addressing mode in which a
16-bit register and an offset
are combined to produce a 16-bit
result. The 16-bit result is
used as an address; the data is
found at that address.

* What is relative addressing?

fn addressing mode where the
operand is an offset relative to
the current position of the
progras counter. Depending on
the conditions of the relative
instruction, the program will
branch to this relative
position.

% What is the term for how a
machine language program gets

its information?

An addressing mode.

60 Lesson 7

If the relative branch is positive (bit 7 is zero), then that
result becomes the address of the next instruction the
processor will execute. However, if the relative branch
value is negative, the 6809 decrements the most-signicant
byte of the address, and uses that as the address of the next
instruction. In this case, the Program Counter reads $4010
and the relative branch is $F7.

$4p1p
plus §$F7
is $41p7

But $F7 is negative, so the most signficant byte of the
address ($41) is decremented to $40. The result is $4007.
Glance at the listing. $4007 is the address where you will
find the label “LOOP”.

The 6809 has two kinds of Relative Addressing — long and
short. Sofar I've been describing short addressing. In short
addressing, one byte is used to carry the program 127
addresses forward or 128 addresses backward. Long
Relative Addressing uses two bytes, but the principle is the
same. If the most-significant bit is zero, the long branch is
positive; if the most-signficant bit is one, the long branch is
negative. There are two major differences between the
short and long branch. In the one-byte short branch, bit 7 is
the most-significant bit; in the two-byte long branch, bit 15
is the most-significant bit. Also, the short branch can move
only 127 addresses forward or 128 addresses backward;
the long branch can move 32,767 addresses forward or
32,768 addresses backward in memory — that is, through
the entire memory map of the computer. Long branches
offer position independent programming. Remember the
term “position independent”; I'll be talking quite a bit
about that later.

Relative Addressing, then, is unique in that the operand
does not provide either an immediate value or a specific
address to the processor. Rather, it provides a value which
canbe used to calculate a specific address inrelationship to
the present position in the program.

Time to summarize. There are seven major ways your
program can obtain the information it needs. These are
called the addressing modes.

1. The information can be implied by the
instruction itself. This is Inherent Addressing.
CLRA (Clear A Accumulator) is an example of
Inherent Addressing.

2. The information can deal with internal
6809 registers. This is Register Addressing.
TFR XY (Transfer X Register to Y Register) is
an example of Register Addressing.

<xee]
ARV

AT

!NND&.XEED 7
CALLULATE.:

(2% (xfse)

S g |
;«\-‘ e
V23E
%I 98 | 72 |?€’

3. The information can be present immedi-
ately following the instruction itself. This is
Immediate Addressing. LDA #$80 (Load A
Accumulator with the value $80) is an example
of Immediate Addressing.

4. The information can take the form of a
memory address where data can be found. This
is Extended Addressing.

LDX $1234 (Load X Register with the
information at Address $1234) is an example
of Extended Addressing.

5. The information can take the form of the
least-signficant half of a memory address. This
can be combined with the value of the Direct
Page register to locate the information in
memory. This is Direct Addressing. If the
Direct Page register is $50, then LDY <$CC
(Load Y with the information at addresses
$50CC and $50CD) is an example of Direct
Addressing.

6. The information can take the form of a
register value, which, together with an optional
offset, identifies a memory address where data
can be found. This is Indexed Addressing.

LDX D,Y (Load X with the information at
Address Y plus offset D) is an example of
Indexed Addressing.

7. The information can take the form of a
value to add to the Program Counter to
determine a new position for the Program
Counter. This is Relative Addressing. BRA $40
(Branch Always to Program Counter plus $40)
is an example of Relative Addressing.

Each of these modes is unique, and each contributes to the
speed and economy of the 6809 processor. Please review
this lesson and read pages 15 through 17 of your MC6809E
data booklet. I haven’t yet discussed what are called the
Indirect Addressing Modes; if, when you read the data
bogklet, the Indirect modes make sense, then you’re doing
well indeed. If they’re not clear to you, don’t worry; that’s
for later. Once again, please review all the addressing
modes before moving to the next lesson.

Learning the 6809

Summary

61

62 Lesson 7

The architecture of the 6809 processor has up to this point
been described piecemeal. Now I'd like to summarize the
6809 processor’s architecture, making the description a bit
more formal. Please look once again at Figure 4 onpage 5 of
the MC6809E data booklet.

The PROGRAM COUNTER keeps the machine language
program running in order. The Program Counter register
contains the 16-bit address of the next instruction to be
performed in the program sequence. The Program Counter
can be changed directly by the programmer, by jumps and
branches within the program, by subroutines, and by stack
operations. The Program Counter is one of the POINTER
registers.

The two ACCUMULATORS perform simple arithmetic.
The A and B Accumulators are each one byte (8 bits) in
size. For some operations, the two Accumulators are
concatenated, creating a single, 16-bit Accumulator. When
A and B are used together as one 16-bit Accumulator, they
are collectively called the D Accumulator.

There are two INDEX registers, each 16 bits in size, which
can be used to identify memory locations. Although by
themselves they are very limited in capability, the Index
Registers X and Y can be used, together with various
calculated offsets, to load or store data anywhere in
memory. To increase their flexibility, the X and Y registers
can also be automatically incremented or decremented
during the course of a machine language instruction. The
Index Registers are also POINTER registers.

There are also two STACK POINTER registers, each 16
bits in size, and each with a different purpose. The User
Stack Pointer, the U register, is only controlled by the
programmer by pushing and pulling information. This
program control allows information to be transferred easily
between portions of a program. The Hardware Stack
Pointer, the S register, is also used for pushing and pulling
information, but is used automatically by the processor to
save Program Counter address information during
subroutine calls,

After two lessons of heavy
abstract learning, you're back
with some familiar convepts and
practice. At the end of this
lesson, you'll be a third of the
way through the course — ready
to jump into the programming
details of the computer. So
give this lesson lots of time,
and practice each instruction
until it's comfortable ...
whether or not you know what

it's good for!

* Name the 16-bit registers of
the 6889,

X and ¥, progras counter PC, 5
and U stacks, and the D
accumulator,

Name the B8-bit registers of
the 6883,

A and B accumulators, condition
code register CC, and direct
page register DP.

* What is the purpose of the
program counter, PC?

It keeps the machine language
progras rumning in order.

What value does the program
counter hold?

The 16-bit address of the next
instruction to be performed.

Learning the 6&:)9 63

Clock cycles

* What is the purpose of the A
and B registers?

To perfors simple aritheetic.

t What is the D register?

The concatenation of the 8-bit R
and B registers into a single
16-bit register.

#What are the X and VY
registers?

Index registers.

* How are index registers most
often used?

To identify mewory locations.

tHhat are the 5 and U
registers?

The § register is the hardware

stack pointer, and the U
register is the user stack
pointer.

% How are the S and U registers
different?

The U register is reserved for
pushing and pulling program
information; the § register is
used for pushing and pulling as
well as for subroutine calls.

$hat is the purpose of the
condition code register?

The condition code register
provides inforsation about the
most recent instruction exscuted
by the processor.

What is ancther name for the
condition code register?

The flags.

¥ What does the direct page
register store?

The direct page register stores

the most-significant half of an
address.

64 Lesson 8

The CONDITION CODE register, or flags, is an 8-bit
register wherein each bit has a meaning and can be used to
make simple judgments (such as greater than, less than,
equal to, positive, negative, carry, borrow, etc.) within a
program. The Condition Code Register is automatically
modified by the results of machine language instructions,
or can be changed directly by the programmer.

The DIRECT PAGE register, 8 bits wide, is given the
most-significant byte of an address. During Direct
Addressing, the Direct Page register provides this half of
the address, and the program provides the least-significant
half of the address. The result is a complete address which
can be used to access data in memory.

Please read pages 4 and 5, and the first portion of page 6, in the
MC6809E data booklet. This section describes the architecture
of the 6809 processor. Return to the tape when you have com-
pleted the reading.

I wanted you to read that to get a firm idea of the 6809’s
innards. The next step is getting a handle on some of the
6809’s instructions, and for this I'll return to your computer
and to a BASIC program. Turn back to your MC6809E
data booklet, pages 30 and 31. These pages contain an
alphabetical list of the 6809 processor instructions, and are
chock full of information.

In the first column is the generalized mnemonic, such as
ADD, DECrement, LoaD, etc. The second column shows
the specific editor/assembler forms it can take, meaning
how to indicate the registers or memory the instruction can
use. The next block of information is entitled “Addressing
Modes”, and provides detailed information on each
instruction in that mode, its specific opcode in
hexadecimal, the number of bytes the instruction requires
for completion, and the number of clock cycles needed for
the process.

I haven’t mentioned clock cycles before; they are vital to
understand when your programming begins to get
sophisticated. You've probably heard that the Color
Computer runs at .89 MHz. Actually, the precise figure for

the computer’s speed is .894886 MHz, that is, 894,886"

clock pulses per second. Any action taken by the 6809
processor is triggered by one clock pulse; at 894,886 clock
pulses per second, that means that the Color Computer’s
6809 can’t do anything in a shorter time than .00000112
seconds. .00000112 seconds is 1.12 microseconds, slightly
longer than a millionth of a second. Knowing this timing is
important when writing programs that transfer information
properly to the printer port, the RS-232, the cassette, the
disk and other devices. Later, when you begin producing
audio from your computer, knowing the clock cycles
required for each 6809 instruction will be essential.

Gasananal

UK
-I_'La|||0|||o|||oﬁ'
\—v\l

.C00CK//2.
SECONDS

tietielijoeftiof!

, 000002.2%
SECONDS

CcLs

PRINT®(1)
PRINT™® (2}
PRINT" (3}
PRINT" {4}
PRINT" (5}
1@ PRINT" (&)
11 PRINT" (7>
12 PRINT" (&>
13 PRINT" (9
14 PRINT™ (R)
13 PRINT" (B>
16 PRINT" (D)

WEND W

17 PRINTCHR$(191)"

Back to the booklet, page 30. The description column,
toward the right, gives in abbreviated notation the function
of each machine language instruction. The symbols and
abbreviations are explained at tlie bottom of the page;
glance at the ADD instruction. You will discover that
addition using the A Accumulator, mnemonic ADDA, is
valid in four addressing modes. In the immediate mode, for
example, you find that the hexadecimal opcode for this
instruction is 8B, that the complete instruction consists of 2
bytes, and that it takes 2 clock cycles (that is, 2.24
microseconds) to execute. The description column says
that the result of A Accumulator plus a value from memory
is transferred into the A Accumulator.

The last group of columns provides detailed information
about the condition code register — how each flag is
affected by the instruction. In the case of the ADDA
instruction, all five condition code bits are affected (either
set or reset) by the results of that command.

These are pretty dense pages. In order to simplify them a
little, I've put together a program in BASIC. It’s fairly long,
§o while it’s loading, start to get familiar with pages 30 and
31. By the way, there are two program dumps on the tape,
just to make certain you've got a good one.

Program #13, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. [f
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

PRINTSTRING® (32, 45) 3
PRINTSTRING® (S, 191)" INSTRUCTION EXAMPLES
PRINTSTRINGS (32, 43)

"STRING®(S5, 191) ;

ADD (ADD)
AND (LOGICAL. AND)
ASL/ASR (RRITHMETIC SHIFT)
cOm {(COMPLEMENT)
DEC (DECREMENT)
EOR (EXCLUSIVE OR)
INC { INCREMENT)
LSL/LSR (LOGICAL SHIFT)
NEG (NEGATIVE)
OR (LOGICAL DR)
ROL /ROR (ROTATE)
SUR (SURTRACT)

TOUCH i — C TO DEMONSTRATE “;:POKE1535,191

18 AS=INKEY$:IFA$=""THEN18

19 A=ASC(A%)

tA=A-4B:1IFA{1 OR AY19 THEN1AB

ze ONA GOSUB23, 37, 5@, 76, 86,97, 112, 122, 138, 18, 18, 18, 18, 18, 18, 18, 1

43,163, 192
Z1 RUN
2z BOTOZE

23 CLS:NF=@:ZF=0:CF=0@

25 GOSUEERS: IFQR=1THENZ3

26 INPUT"VALUE TO ADD FROM MEMORY OR FROMOTHER REBGISTER (HEX) "j;A

2$:1AE=AES

27 Q=@:G08UB21@;:IFQ=1THENZ3

28 X=A:A2=R:B0SURZ1Z:02%=0%

29 X=A1+A2:A3=X

3@ IFX)ESSTHENX=X-256:CF=1:A3=X
31 IFX=@THENZIF=1

Learning the G809

Execution time

tHow is the direct page
register uued?

In the direct addressing mode,
the register is used to create a
complete address,

What is an addressing mode?

How the machine language progras
gets its information.

What do you call the verbal
description of a processor
comsand?

A mnemonic.

* What is the proper nawe for a
processor command?

fn opcode.

What is the clock speed of the
Color Computer?

.83 MHz (.B894885 MHz or B9, 886
pulses per second).

* How long is one clock pulse on
the Color Computer?

fpproximately .00008112 seconds

or l.i2 microseconds, {More
accurately, 111746
microseconds).

Hom long is a microsecomd?
Ore millionth of a second.

& The ML (multiply) instruction
takes 11 clock cycles. How long
is this on the Color Computer?

11 times 1,11746 microseconds,
or 12.29206 microseconds.
#+1DR immediate and LDB
imediate each take 2 clock
cycles, How long is each
instroction on the Color
Computer?

£ times 1.11746 microseconds, or
2.2349¢ microseconds.

Program #13

51D euntended takes 6 clock
cycles. How long is this?

& times 1.11746 microseconds, or
6. 76476 microseconds.

* Mitiply is A times B, with
the result in D If a
multiplication program consisis
of LDA and LDB imsediate {(each 2
clock cycles), MAtiply (1}
tlock cycles), and STD extended
{6 clock cycles); how long is
this?

(242¢1146) times 1.1174
microseconds, or 23. 46666
microseconds) .

¥ At 23.46666 wmicroseconds per
multiplication progras, how sany
complete multiplication programs
can the Color Computer do in one
second?

The Color Computer can perfors
42,613 multiplication programs
per second,

What iz the purpose of the
condition code register?

The condition code register
provides inforsation about the
wost recent instruction executed

by the processor.

In the following exercises,
give the vresults of the
instruction, where the result is
found, and the effect on the
three flags N, I and C
(rondition codes negative, zero
and carry). For example, the
probles: A contains 841,
Execute ADDA #8CC. The answer:
f contains $8D. Carry flag set.
lero and negative flags reset.

% Problew: A contains $84,
Execute ADDA #$FB.

fnswer: R contains $FF.
Negative flag set. Zero and
carry flags reset.

66 Lesson 8

32 GOSUBEIZ:03%$=0R%
33 PRINT

34 PRINTTAB(S)Q1s"
NE$ (2@, 45) : PRINTTRE(S) Q3"
EPRINTHEX$ (R3)

35 GOSUBZE4

36 GOSURS22:RETURN

37 CLS:NF=0:ZIF=Q:CF=@

38 PRINT"--)> LOGICAL AND TWO NUMBERS (--*;

39 GOSUR=E5: IFQR@=1THEN37

4@ INPUT"VALUE TO AND FROM MEMORY OR FROMOTHER REGISTER (HEX) ":iA
2FAE=AZE

41 O=@:G0SURZ1@: IFQ=1THEN37

42 X=R:A2=A:6B08UBE1Z:QE$=Q%

43 X= A1 AND A2 : RA3=X

44 IFX=@THENZF=1
4% GOSUBZ21Z2:Q3%=0%
46 PRINT

47 PRINTTRE(S)Q1s$»
NG$ (2@, 45) : PRINTTAEB(S)Q3%"
PRINTHEX$ (R3)

48 GOSUBRZZ4
43 GBOSUBSEZ:RETURN

S@ CLS:NF=@R:ZF=0:CF=Q

51 PRINT"ARITHMETIC SHIFT LEFT OR RIGHT"$PRINT®TOUCH L OR R

ST AS=INKEY$: IFAS="L"0RA$="1"THENSIELSEIFR$="R"BRA$="r"THENG3ELS
STy

53 CLSsPRINT"——--> ARITHMETIC SHIFT LEFT (-

54 GOSUBRZES: IFOO=1THENSS

55 X=A#*z:1Aa=X

36 IFX) 23STHENX=X-256:CF=1:A2=

57 IFX=@ATHENZF=1

S8 GOSUBRZ1c:QE$=0%

59 PRINT

6 PRINTTAR(S)G1s" "A1$E:PRINTTRAB(S) " {~~—— SHIFT --—~":PRINTTRE
(3 0s” "3 IFASCKIGTHENPRINT"@"+HEX$ (AZ) ELSEPRINTHEXS (A2)

&1 GOSUBEZ4

6& GOSURSEE: RETURN

63 CLS:PRINT"=~~} ARITHMETIC SHIFT RIGHT ({(———";

64 GOSUBZES: IFQO=1THENGS

65 IFRY 1E7THENNF=1

66 X=FIX{R/&) 1 IFX)B3THENX=X OR1z8:RZ=X:ELSEARS=

&7 IF{A/Z) OFIX(A/2) THENCF=1

68 IFX=@THENIZF=1

69 GDSUBRZ1Z2:0z%=0%

7@ PRINT

71 PRINTTAR(SYO1s "Al$:PRINTTABR(S) " ———~ BHIFT ————)":PRINTTARE
(Sraes" "3 IFAZ{1ETHENPRINT"@"+HEX$ (RZ) ELSEPRINTHEXS$ (AE)

72 GOSUBEZ4

73 IFNF=1 THEN PRINT:PRINT"NOTE BIT 73 SEE DATA ROOKLET.":G0TO7S
74 1IFCF=1 AND NF=@ THEN PRINT:PRINT"NOTE CARRY FLAG; SEE DATA BO
Or. "

75 GOSUBZE2:RETURN

76 CLB:NF=@:IF=@:CF=1

77 PRINT»—=-~-~) COMPLEMENT A NUMBER (-—--"

78 GDSUBZES: IFRR=1THEN76

77 X=NOTR AND Z55:RE=X:GOSURZ12:G2%=0%

8 IFX=@THENZIF=1

81 IFX> 127THENNF=1

82 PRINT:PRINTTAER(SIDis$" "A1$:PRINTTAR(S) "#* COMPLEMENT *%":PR
INTTARER(S) Qas™ "3 s IFAZ (I6THENPRINT"@"+HEX$ (A2) ELSEPRINTHEX$ (R2

"ALE:PRINTTAR(S) RE$™ "A2$: PRINTTARE(S) 8TRI
"3:IFA3(16THENPRINT"@"+HEX®$ (R3) ELS

“"Al$: PRINTTAR(D) Qas” "AZ$: PRINTTRAR(E) STRI
"3 IFAS (16THENPRINT"@"+HEX® (RZ)ELSE

83 GDSUBZZ4
84 PRINT:PRINT"NOTE CARRY FLAG; SEE DATA ROOK."

85 GOBUBSES:RETURN

86 CLS:NF=@:ZF=2:CF=@

87 PRINT"-—~-—) DECREMENT A NUMBER (————*

88 BOSUREES: IFQA=1THENBE

83 X=A-1:AS=X:IFX (AQTHENX=255:A2=X :NF=1

9@ IFX=@THENZF=1

91 IFX) 127THERNNF=1

92 GOSURZ1Z:08$=0%

93 RRINT

34 PRINTTAR(S)Q1s" "A1%$:PRINTTAB(S) "#% DECREMENT ##" :PRINTTAB(
5)Ras" " s IFAS (IETHENPRINT "@" +HEX$® (AZ) ELSEPRINTHEX$ (AZ)

25 GOSURSE4

96 GOSUESEE:RETURN

37 CLS:NF=@:2F=@:CF =@

38 PRINT"LOGICAL EXCLUSIVE-OR TWO NUMEERS";

39 GOSUBS2S: IFOD=1THENY?

1@@ INPUT"VARLUE TO EXCLUSIVE-OR, TAKEN
OTHER _REGISTER":R&%:AS=ASE

121 QO=@:G0SUBZ1@: IFGR=1THENI?7

FROM MEMORY OR FROM AN

iz
1&3
104
125
12&
1@7
18

INGS (2@, 45) :PRINTTRABR(S) Q3%"

X=A3AE=R:GOSURZ1Z:A&$=0Q%

X=(A1 AND NOT{AZ))> OR (NOT(A1)
IFX=QTHENZF=]
IFX) 127 THENNF=1
GOSUBZ1E:03%=0%
PRINT
PRINTTRAR(S)D1%"

AanD A& sA3=X

"A1$:PRINTTAE (D) QEs" "RZHIARINTTRAE(S) STR
"1 IFASIGTHENPRINT"@"+HEX® (A3) &L

SEPRINTHEX® (R3)

i@a9
1i@
111
112
113
114
115
il6
117
iia
113

(5) 02s"

12@
1z1
1z2&
123
14

E0SUBRZZ4

GOSUEBZ2=E2 : RETURN

RETURN

CLS:NF=Q: ZF=0:CF=@

PRINT"——~—) INCREMENT A NUMEER
GOSUBRZES: IFQO=1THENL1Z

X=+1 :AE=X IFX) 25STHENX=Q:AZ=X: ZF=1 : NF =@

IFX> 127 THENNF=1

GOSURZ1Z: Q2%=0%

PRINT

PRINTTAEB(SD Q14" "Al%:PRINTTAEB(S) "#% INCREMENT ##":PRINTTAR
"33 IFAZ (16THENPRINT @ "+HEX$ (AZ) ELSEPRINTHEXS (A2)
GOSURET4

GOSUBZ2Z2 s RETURN

CLE:NF=@: ZF=@:CF=@

PRINT") LOGICAL SHIFT LEFT DR RIGHT «(¢

PRINT"TOUCH L. OR R"

o

125 As=INKEY$:IFA$="L"DRA%="1"THENIZ6GELSEIFR$="R"ORA$="r"THEN1Z9
ELSE125

186 CLS:PRINT"-———) LOBICAL SHIFT LEFT {~=—==

127 GOSUBREZES: IFQR=1THENIZE

128 BOTOSS

129 CLS:PRINT"——--) LOGICAL SHIFT RIGHT {(———-"

132 GDSUBRE2S: IFQR=1THEN1&9

131 X=FIX{(A/2):A2=X:IFA/2OFIX{A/2) THENCF=1

1328 IFX=@THENZF=1

133 GOSUBZ12:02%=0%

134 PRINT

135 PRINTTAR(S OQ1%" "Al$:PRINTTAR(S) "~——— SHIFT —~~=)":PRINTTA
B(5)Qzs" "3t IFAZ (16THENPRINT"@"+HEX$ (RE) ELSEPRINTHEXS$ (A2)

136 GOSUB2IZ4

137 GOSUEEZEEZ:RETURN

138 CLS:NF=@:ZF=@:CF=Q

133 PRINT"——r—w— » NEGATE A NUMBER (———=——— "

14@ GOSUBZES: IFRQR=1THENL 38

141 REM

142 REM

143 X=(NOTA AND 255)+1:A2=X:B05UB212:02%=0%

144 IFX=@THENZIF=1:CF=1

145 IFXY 127THENNF=1

146 PRINT:PRINTTAEB(S)Q1%" "Al1$:PRINTTAB(S) "#* NEGATIVE #*#":PRI
NTTRAB (D) QEs" "3 IFRZ(16THENPRINT"@"+HEX$ (A2) ELSEPRINTHEXS$ (R2)
147 GOSUBZE4

148 GOSUBEEZ:RETURN

143
15@
151

15&

CLS:NF=@:2F=0:CF=@

PRINT"——~) LOGICAL OR TWD NUMRERS {(—--"3

GOSUEBZES: IFQA=1THEN143

INPUT"VALUE TO DR FROM MEMORY OR FROM ANDTHER REBISTER (HEX)

"iREs AS=REE

153
154
155
156
157
158
159
iea

INGS (2@, 45) : PRINTTAB{(S) Q3%"

0Q=2;G0SUBRZ1@: IFQA=1THEN143
X=A:AS=R:GOSUBZ12:02%=0%
X=A1 OR AZ : A3=X
IFX=0THENZF=1
IFX) 127 THENNF=1
GOSURZ12:03%=0%
PRINT
PRINTTAR(SYQ1$" "A2H: PRINTTAR(S) STR
"3 :IFA3S(IETHENPRINT"@"+HEX$ (A3) EL

"AlE:PRINTTAR(S) Qs

SEPRINTHEX$ (R3)

161 GOSURZZA

162 GOSURZE2:RETURN

163 CLS:NF=@:ZF=R:CF=0

164 PRINT"----) RDTATE LEFT OR RIBHT (~—~-"3

165 PRINT"TOUCH L OR R"

166 A$=INKEYS$: IFR$="L"0ORAS="1"THENIG7ELSEIFA$="R"DRA$="r"THEN18Q
ELSE166

167 CLS:PRINT"STATE OF CARRY FLABG? (@ OR 1) ";

168 A$=INKEY$:IFA$="0" OR A$="1"THENPRINTA%:CF=VAL (A%) :EL.SE168
163 GOSUBZES: IFQA=1THENLGT

17@ X=A#*z:Ag=X

171 IFX{(2E6THENX=X ORCF:AZ=X:CF=0:G0TO173:ELSE172

172 X=X-256: X=X ORCF:CF=1:A2=X

173 IFX=@QTHENZF=1

174 IFXX1Z7THENNF=1

Learning the

Program #13

Problem: B comtains SRR
Execute ANDB #6335,
fnswers B contains 398, lero

flag set. MNegative flag reset.
Carry flag unaffected.

Problem: B contains AR,
Execute ANDR #65F.

finswer: B contains SR, lero
and negative flags reset. Carry
flag unafficted.

+ Problews f contains $FF.
Execute DR} #$A5.
Arswers A comtains $F.

Negative flag set. lerc flag
reset. Carvy flag uvmaffected.

% Problem: A contains $AR.
Execute DR\ #4$55.

Ancwer: A contains $FF,
Negative flag set. Zero flag
reset. Carvy flag unaffected.

Problem: R contains %00,
Execute ORS) 3608

Answer: A contains $88. Zero
flag set. Negative flag reset.
Carry flag unaffected.

% Problewm: B contains $FG.
Execute ORB J$0F,

Answer: B contains SFF.
Negative flag set. Zero flag
reset. Carry flag unaffected.
-# Problems B comtaine OFF.
Execute COMB.

fnswer: B comtains $08. lero

flag set. Negative flag reset.
Carry flag 2lways set by COM
instruction.

Probles:
Execute COMA.

f contains $PAR.

fnswer: R contains $55. Iero
and negative flags reset. Carry
flag always set by COM
instruction.

67

Flags

* Probles: A contains 484,
Execute ADDA #$FC.

frswer: A contains $08. levo
and carry flags set. Negative
flag reset.

Problem: A containg $04.
Execute ADDA #$FD.

Pnswer: A contains #81. Carry
flag set. Negative and 2evo
flags reset.

+ Problem: B contains $80.
Execute SUBB #%01.

fmswer: B contains $7F, All
flags reset.

* Problews B contains $81.
Execute SUBB #981.

B contains $B8,
lero and

Answer:
Negative flag set.
carry flags reset.

Problem: B contains $88,
Execute SUBB #$88.

Answer: B contains $88. lero
flag set. Negative and carry
flags reset.

Problem: B contains $88.

Execute SUBB #$B1.

Fnswer: B contains §FF.
Negative and carry flags set.
lerc flag reset.

Problem: A contains $FF.
Execute ANDA MFF.

Answer: A contains §FF.
Negative flag set. levo flag
reset. Carry flag umaffected.

+ Problem: f containg OFF.
Execute ANDR #$A5.

Answer A contains A5,

Negative flag set. Zero flag
reset. Carry fiag waffected.

68 Lesson 8

175 GOSUBEL1Z:DE$=R¢

176 PRINT

177 PRINTTAB(S) 1" "A1$:PRINTTRB(S) " {——— ROTATE —-——":PRINTTAR
(Sryaes” "1 IFAZ (16THENPRINT"@"+HEX® (RZ) ELSEPRINTHEXS$ (A2}

178 GOSUBZ24

179 GOSBUEZZEZ:RETURN

18@ CLS:PRINT"STATE OF CARRY FLAG? (& OR 1) "3

181 A$=INKEY$:IFA$="0" OR A$="1"THENPRINTA%:CF=VAL (R%):ELSE181
182 GOSUBRZZS5: IFGO=1THEN1IBR

183 X=(FIX(R/Z)1)0R(CF%128) :AE=X

184 IFFIX(A/E) (YA/ETHENCF=1ELSECF=Q

185 IFX=@THENZF=1

186 IFX) 127THENNF=1

187 GOSURZ1Z:Qoe=0%

188 PRINT

183 PRINTTAB(SIGIs" "Al$:PRINTTARE(S) "~-~ ROTATE ——-)":PRINTTRE
(Syaes” "3 IFAZ (16THENPRINT@"+HEX$ (A2) ELSEPRINTHEX$ (R}

192 GOSURZZ4

191 GOSUEEEE: RETURN

138 CLS:NF=@:ZF=@:CF=0

193 PRINT"~-~-) SUBTRACT TWO NUMBERS (-—--"3
134 GOSURZES: IFQR=1THEN13Z

195 REM

196 REM

137 INPUT"VALUE TO SUEBTRACT, TRKEN FROM MEMORY OR OTHER REGIST
ER (HEX)":AZ%:A$=AZ%

198 GE=@:G05URZ1Q: IFQMU=1THEN19Z

199 X=A:PS=A:B0SUBE 12 :0a%=0%

SQ@ X=A1-AZ:A3=X

Z@1 IFX(ATHENCF=1:X=X+25&:A3=X

T@E IFX=@THENIF=1
Z@B3 IFX) IE7THENNF=1
s4 GOSURZIZ:R3E=UE
=S PRINT

206 PRINTTAB(S)QELIE"
INGS (2@, 45) : PRINTTAR (D) D3%"
SEPRINTHEXS (A3)

"ALFPRINTTAR(S) GES" TAES: PRINTTAR(SIETR
Y3t IFASIETHENPRINT '@ +H5EXS (A3) EL

@3 FORN=1TO1@@&:NEXT:RETURN
21@ A=VAL ("&H"+AR$) : IFA@ 3R AYESS THEN PRINT"VALUE OUT OF RANBGE™"
:GOSURZRATF:G6G=1 : RETURN
Z1i OR=@:RETURN

C=INT(X/18) :D=C*1&8

E=INT((X-D} /64) :F=E*E4

B=INT ((X-D-F) /3&) : H=G*32

I=INT ((X~D-F-H)/16) : J=1%16

K=INT ((X~-D-F~H~J) /8) :L.=K*8

M=INT ((X=D—-F~H-J=-L) /4) : N=Mx4

O=INT ({(X=D-F-H-J-L-N) /2) : P=0%*&

Q=INT (X-D~F-H-J-L-N~P)

QE=STR$ (C) +5TRS(E)+STRE(BI+STRE (1) +8TRE (K) +8TR$ (M) +ETR$ (03 +S
[£e)}

RETURN

PRINT"PRESS ENTER TD CONTINUE";

A$=INKEY$: IFA%$ () CHR$ (13) THENZ23ZEL.SERETURN

PRINT:PRINT"FLAGS: “:PRINTTREB(7)"N Z C":PRINTTRAB(6)C:ZF;CF:
NT : RETURN

INPUT"VALUE IN ACCUMULATOR (HEX) ";A1s$:AE=N1$

QO=&:GOSUBE1@: IFRA=1THENRETURN

X=A:A1=A:508UE212:Q1$=0%

RETURN

ODNOU = PWU-®#UBNDUS

To P PO FO O Mo Fe B o =3 B0 TG f T0 Fo Fu B0 O R FO
PO T O PG S0 PO FO MO [0 0 [0 5 e o ko e e e b o

RUN this program. On the screen are 12 common
instructions selected from the total of 59 that the 6809
processor can execute. For your amusement, I've
numbered them in hexadecimal.

Some of the instructions will already be familiar, but I'd like
you to get a detailed idea of how each one works, and what
its results are. Here’s how it goes. You will input all values
in hexadecimal, but the display will be done in both hex and
binary, so that the inner workings of each instruction will be
evident. Although there are five flags, I've chosen only the
most used ones (negative, zero, and carry) to display in
these examples.

App

0000 000/ FOi
1 cooo ccos HF01
OO0 OO0 402

ADD

/000 OO/ 48

+ /000 dc/

0C00 O0/0 $OZ
e

o f
,}A

Frm

SUBTRACT

ocoo/ coco %[0
— 0000 1 /00 404

QOO0 G/00 FOL

SUBTRACT

ocn/ 0cod +i
— 000! ao0/ -H||

A
Bz
TS

é\

AND

%

FFE

s 7147 L4454 W%
'

You can start with a familiar instruction, selection #1,
ADD. Touch 1 on the keyboard.

As you can see, for simplicity I'm making the assumption
that the initial value will always be in an accumulator, and
that all values will be 8 bits. Enter hex number 01 as the
accumulator value. The second prompt appears. To the
accumulator value will be added a value from memory or
from another register in the processor. You'll add 1 to this.
Type $01 and hit <ENTER>.

On your display are the two numbers being added, and the
result, which is $02. All three are displayed in both binary
and hexadecimal. The flags reveal three pieces of
information: that the resulting number is not negative, it is
not zero, and there was no carry generated by the
calculation.

Hit <ENTER>>, and touch 1 again. This time, enter hex
$81 into the accumulator. Add to this the value hex $81.
The result is the same as before — $02, But the carry flag
reveals something very important. It tells you that,
although the apparent 8-bit result is $02, the addition
actually produced a number larger than 8 bits.

Now some subtraction. Hit <ENTER>, and touch
selection C. Enter $10 into the accumulator. From this,
subtract the value, say, $04. The result is $0C, a non-zero
positive number, as the flags indicate. Hit ZENTER> and
touch C again. Enter $10 into the accumulator again, but
this time subtract $11. The result is $FF. The flags tell the
story. It is a negative number, and the carry/borrow flag
shows that a borrow was required to complete it. That
carry/borrow flag is vital to recognize.

Add and subtract are straightforward. Try each of them a
few times at the end of this lesson. I'll go through the rest of
the instructions in this group. When I’'m done, you're on
your own for a while. Let me walk over to the kitchen. ..

Hit <ENTER> to get back to the menu. You've tried ADD
and SUBtract, so now touch 2 for logical AND. This is the
first of the logical instructions (also called Boolean
Algebra, but we’ll forget that term). Logical AND requires
both statements of a pair to be true for the result to be true.
For example, this statement demonstrates logical AND: “If
I break this plate AND Claire sees the broken plate, then
she will scream at me”. If either statement is not true —
that is, if either I didn’t break the plate, or if Claire didn’t
see the broken plate — then I'll get off. Here comes Claire
now. <Breaking plate. “Look, you broke that plate!
Arrrggh!!” etc.> Likewise, in binary arithmetic, both bits
must be ones — that is, both bits must be true — for the
result to be true. Enter $FF into the accumulator, and $00
into memory. Each bit of the accumulator is ANDed with
each corresponding bit in the operand. The results here are
all zeros. The zero flag goes on.

Learning the 6809

ADD, SUBtract, AND

+ Probles: fi contains $EC.
Execute COMA.

fnswer: A contains $13. lero
and negative flags reset. Carry

flag always set by (DM
instruction.

Problam: A contains $47.
Execute COMA.
Answer: A contains $BA.

Negative flag set. 2evo flag
reset. Carry flag always set by
COM instruction,

Probles: B contains $6F.
Execute COMB.
Answers B contains OF8.

Negative flag set. lero flag
reset. Carry flag always set by
oM instruction.

Problem: R contains SAA.
Execute EDRR #5908,

Answer: A still contains $AA.
Negative flag set. lZevo flag
reset, Carry flag not
affected.

+ Problem: A contains $OR.
Execute EGRR #%4R.

fnswer: A comtainc $08. lero
flag set. Negative flag reset.
Carry flag not affected.

Problem: A contains $PA.
Execute EORR $$FF.

Answer: A contains 55,
Negative and zero flag reset.
Carry flag not affected. Has
effect of COMR except does not
affect carry flag.

Probles: B contains $08.
Execute EDRB #$CB.

fnswer: B contains #SCB,
Negative flag set. Zero flag
reset. Carry flag mot
affected.

69

OR, Exclusive OR

Problem:
Execute ASLA.

A contains

fnswer: A contains S$IE, All
flags reset.
+ Probles: f contains
Execute RSRA.

fmcwer: A contains @7, All
flags reset.
$B8.

Problew: A contains

Execute RSLA.

fnswer: A contains $18, Carry
flag set as bit drops into
“bucket®. Negative and 2zevo
flags reset.
Probles: A contaims $8B.
Execute ASAA,

(bit 7
Negative

fnswer: A contains $C4
duplicated at left).

flag set. lero and carry flags
reset.

Probles: B contains 688,
Carry flag is set. Execute
ROLB.

fnswer: B contains $11. Carry
flag set. Zero amd negative
flags reset.

% Problew: B contains %68,
Carry flag is set. Execute
RORB.

Prnswer: B contains $C4.

Negative flag is set. Carry and
zero flags are reset.

+ Probles: A contains $82.
Execute DECA.
Pnswer: A contains $O1,

Negative and zero flags reset.
Carry flag not affected.

Problem: f contains $61.
Execute DECA.
Prswer: P contains $08. lero

flag set. Negative flag reset.
Carry flag not affected.

70 Lesson 8

Hit <ENTER>>, and touch 2. Again enter $FF into the
accumulator. This time try $AA as the memory contents,
and hit <ENTER>. Each bit of the pairis ANDed, and the
result is $AA. The negative flag flips on.

Contrast this with logical OR. Hit <ENTER>, and touch
A. Logical OR states that if either or both of two conditions
is true, then the result will be true. For example, this
statement describes logical OR: “If I eat this pie ORI eat
this ice cream, then I will be pleased.” Binary numbers
can’t measure my level of pleasure, but they canreport that
<mouth full> I will be pleased if I eat either the pie or the
ice cream, or if I eat both. Likewise, in binary arithmetic, if
either number is a one — that is, if either number is true —
the result will be true.

Enter $FF into the accumulator. Then enter $00 as the
operand. You can see two things: first, you find that since
all bits in the accumulator are one, all bits in the result will
be one, regardless of the operand; second, the negative flag
flips on because bit 7 is a one. Hit <ENTER>>, touch A,
and put $55 in the accumulator this time. As the operand,
enter $AA. The numbers 1 chose here have alternating bits,
just to demonstrate that neither byte need have bits in
common — it is truly an either/or situation. Note the
negative flag is on.

Just one more OR. Hit <ENTER>>, and touch A. Put $0C
in the accumulator, and $CO into the operand. In this
example, you can see that where neither bitis true, zeros do
result from the logical OR process. Again, you'll want to try
examples of logical OR at the end of the lesson.

Move on to COMplement, selection 4. Hit <KENTER>,
and touch 4. A number’s complement is created by
reversing all the binary digits in that number; it’s the
equivalentof alogical NOT. For example, enter $A5. All the
zeros become ones, all the ones become zeros. The result
after the complement is $5A. Hit <ENTER>, touch 4, and
place $FF in the accumulator. The complement of $FF is
$00. The zero flag flips on. Notice that in this instruction,
the carry flag always turns on, regardless of the result,
merely to indicate the completion of the instruction.

The logical Exclusive-OR instruction is next. This is a
command used to “toggle” individual bits. You understand
how logical AND, OR and NOT work. Just for review, two
binary values ANDed together give a one result only if both
values are one, as | mentioned above. Two binary values
ORed together give a one result if either value is a one.
Logical NOT simply flips one bits to zero, and zero bits to
one, as in the COMplement statement you've already
tried.

Logical Exclusive-OR gives a true result if either, but not
both, of the premises are true. That’s a little hard to
analogize toreal life, but since I'm still here in the kitchen, it
might go something like this: “If I eat this full-course
Chinese dinner Exclusive-OR ifI eat this full-course Italian

OR.

L2070 L4471
RSO0 AS00

Y
= 55

Q/// ////

,N\

OR,

¥FF

Or6) Oro/
R {O0/0 [O7O

b4
R

ﬁ)/” 7777

‘N"

’f//l'\

SR

Fer

D000 /00
CR 1100 008o

« 35

(j'oo //Oo

va

OR

¢

e

V,

o\

COMPLEMENT

aMp /D70 O/0/7

COMP $AS

orar oot

E 27N

COMPLEMENT

COMP //7/ /171 COMP BFF

0000 000 g

CoMPLEMENT
SYMEDL-

o T oo

EXCULUSIVE OR

/GO0 OO0 *80
BOR /OO0 OO0 EOR 8D
0000 OO k- te o

—"\M‘/k

=ZZ

///,VJ\‘F

EXCLUSIVE. OR,

o000 000 Foo
BEOR /000 Qo000 EREE0
] 000 000G 8

Z
i\

EXUUSIVE. OR-

ool orro 46
R OAIO o/ /70 R FLb
©0/0 o000 322

- Prreratt |

EXULDSIVE
OR

LOGICAL
SYMBoL.

Y

= XNY

dinner, then I will be content.” If I eat neither, I won’t be
content; if I eat both, I'll probably explode. Logical
Exclusive-OR is the equivalent of the quantity (A and NOT
B) ORed with the quantity (NOT A and B) . .. but that’s not
very revealing either.

Try it this way: if two bits are different, the result will be
one. If the bits are the same, the result will be zero. What
makes this idea useful is that information can be “toggled”
back and forth between numbers. Turn to the program fora
visual example.

Hit <ENTER> and touch 6. You're going to toggle
between, say, $80 and $00. Enter $80 into the accumulator.
Pause here and think about hex $80 and $00. In binary, $80
is 1000 0000, and $00 is 0000 0000. Only bit 7 is different
here. You need to find a value that, when Ex-ORed with
1000 0000, gives 0000 0000. Recall how Exclusive-OR
works: to get a zero result, the two bits being Ex-ORed
must be the same. That suggests that 10000000 Ex-ORed
with 1000 0000 should give an all-zero result. So the hex
equivalent of 10000000 is what you want . . . and that’s $80.
Enter $80, and look at the binary display. Incidentally, the
zero flag flipped on.

Hit <ENTER> and touch 6 again. This time, enter the
result from the Ex-OR you just did. Enter $00 into the
accumulator. And enter $80 as the operand. The result is
$80. Here's why Exclusive-OR is called a toggle function.
When value X is Ex-ORed with value Q, the result is value
Y. When value Y is Ex-ORed with value Q, the result is
value X. Under the Exclusive-OR function, value Q
becomes atoggle, flipping back and forth between values X
and Y.

Remember the flashing “F” at the top of the screen when
you load cassettes into the Color Computer? This
alternates value $46 with value $66. Hit <ENTER> and
touch 6 again. Enter $46 into the accumulator, and $66 as
the operand. The result should be $20. $20 can then be
used in a program as a toggling value. $46 Exclusive OR
$20 is $66, $66 EOR $20 is $46. Uppercase F becomes
lowercase F, and vice versa. And the advantage to a
toggling value is this: you don’t have to know which state
the original value is in to toggle it. That’s ideal, because in
this example, the tape-loading program doesn’t have to
keep track of which “F” it's displayed.

But enough of Exclusive-OR. You can try it at the end of
this lesson.

Shifts and rotates are interesting commands. Essentially,
they are binary multiplication or division by two. In the
decimal system, a left shift is multiplication by ten, a right
shift is division by ten. If that doesn’t make immediate
sense, consider the number 247. Shift it to the left and it
becomes 2470; shift 247 to the right and itbecomes 24.7 ...
multiplication and division by ten. The difference between
types of binary shifts in the 6809 has to do with what
happens to the bits on either end of the byte.

Learning the

Exclusive OR

+ Problem: A contains $0@.
Execute DECA.

Answer: A contains $FF.
Negative flag is set. Zerc flag
is reset. Carry flag not
affected.

+ Problem: B contains $FE,
Execute INCB.

Answer: B contains $FF.
Negative flag is set. Zero flag
is reset, Carry flag not
affected.

* Problem: B contains §FF.

Execute INCR.

Answer: B contains $08. Zero
flag is set. Nepative flag is

reset. Carry flag not
affected.

Probles: B contains $08.
Execute INCB.

Answer: B contains $@1.

Negative and zero flags are

reset, Carry flag not
affected.
* Problem: B contains $01.

Execute NEGB.

Answer: B contains $FF.
Negative and carry flags are
set. lero flag is reset.

* Problem:
Execute NEGB.

B comtains $08.

Answer: B contains $08, lero
flag is set. Negative and carry
flags are reset,

* Problew: B contains $B80.
Execute NEGB.
Answer: B contains $B0.

Negative amd carry flags are
set. Zero flag is reset.

Problem:
Execute NEGA.

A contains $AA.

fnswer: A contains $56. Al
flags are reset,

6809 =

Left and right shifts

% What is the purpose of the
condition code register?

The condition code register
provides information about the
wost recent instruction executed
by the processor,

72 Lesson 8

An arithmetic shift to the left puts a zero into the rightmost
position; a similar shift to the right leaves a trail of the value
of the leftmost bit. The bit that is shifted out the end of the
byte fallsinto the carry flag; in a situation like this, the carry
flag is sometimes called a “bit bucket”. A logical shiftleft is
identical to an arithmetic shift, but a logical shift right
leaves a zero in the leftmost position. Again, the bit falling
off the end drops into the carry flag. Finally, a rotate
command is circular, as the bits move left or right through
the carry flag. Try the arithmetic shift here.

Hit <ENTER>, and touch 3. You've got a prompt for an
arithmetic shift. Do the left shift first; touch L. Put a hex
value $FF into the accumulator. The row of bits is shifted
left, a zero follows from the right, and the leftmost bit ends
up in the carry flag. Notice that since bit 7 is high, the
negative flag also goes up.

ARTHMETIC.
LEFT SHIFT

K [AAAZAAAN < O $ee
i W

§;<:J [/]/]/I/I/l/[/[oj? $FE
EZN

by ‘\.J,//W“
zC7 :N%
AN G

Hit <ENTER>, and touch 3. Touch L again. Put $55 into
the accumulator. Notice how the bits all move left. This
number turns negative (becoming $AA), but the carry flagis
zero. You can explore all those details later; try aright shift

now.
AR[THMETIC.
LEFT SWFT

< e Aol el7] <o $95

[N MA
SO FREISIEl ol +#
j PG
=N
PN

1

LEFT SuiFT

(&)< [Tl elolo]ole]e] 4O $&0

M.r»/_ vvhgb
%411 BERRRRERER $00
LL o4
re M R ’
Tz e
7v%x 7

Hit <ENTER?>, touch 3, and touch R. Put $80 into the
accumulator. This time observe bit 7, the leftmost bit. It
begins to leave a trail of ones behind it; the value after
shifting is $€0. Hit <ENTER?>>, touch 3, touch R, and
enter $CO. The trail of ones continues to follow.

ARITHMETIC.
RIGHT SHIFT
[Ieeloelolole] =p[€] 480
Ry
;;[/I’IOIOIOIOIOJOJ =P %o
T

R
e

)}\l\;"

7
<& z470 <&

B 2475p

TELREMENT

TEL. /000 o0o/ +8!

7600 6o00 $60
N

5NE
vy

TECREMENT

DEC. 7200 8080 $e0

Ot 1107 $7F

TECREMENT

DEL OO0 oo 35
1007 2777 $FF

-I'A’/IL

ZN&

v

N

INCREMENT

IN. 0000 ©/// INCHOT
000D /000 EYe)

INCREMENT

INC o174 11717 e $7F
/000 oo 285
\\N/.(
SN
EUS
s

INCREMENT

We. 77747 72727 (S22
Q0O OO0
}%Jvﬂ.,»

7"1‘1"\:

NEGKTE-

NEGs 0008 OO0/ Nes$F1
/1727 sl f BFF
Wiy)wp/
iN 2C¢
KR NRIR

NEGATE.

NEG /006 003 NEG$8O

/060 o000 $80
S.\\lf LZ 2 } /{:‘

Ry
AT

INCrement, DECrement, NEGate

I'm going to skip doing the Logical Shifts and Rotates in
this explanation; you can check out selection 8 and
selection B on your own at the end of the lesson.

Move on to the next 6809 processor command. Hit
<ENTER>, and touch 5. This is a decrement by one
command. Enter $81 into the accumulator. $81 minus one
is $80. The negative flag is on. Decrement it one more time;
hit LZENTER>, touch 5, and put $80 into the accumulator.
The value becomes $7F; the negative flag is off. One more
thing to notice with the decrement command. Hit
<ENTER>, touch 5, and put $00 into the accumulator.
$00 minus 1 is $FF. The negative flag flips on.

The opposite of the decrement is the increment, also a
straightforward command. Hit <ENTER>, and touch 7.
Enter $07 into the accumulator. The value is incremented
by one to $08. Not much there; all flags are off. Hit
<ENTER>, and touch 7. This time put $7F into the
accumulator. The value increments from $7F to $80. The
negative flag flips on. Finally, hit KENTER> and touch 7
again. Enter $FF into the accumulator. The number
increments with the result being $00.

There's just one selection left, and that’s NEGQGate,
selection 9. Hit <ENTER>>, and touch 9. Enter $01 into
the accumulator. The negative of $01 is $FF. If you recall
from an earlier lesson, you counted backwards from zero in
one programming example, and it makes sense that one
less than zero, —~1 in decimal, would by $FF in 8-bit data.

Hit <ENTER> and touch 9. Put $80 into the accumulator.
The result is — $80! I'll leave you to check the flags and
ponder that result.

Please review this lesson, spend some time with pages 30
and 31 of the MC6809E data booklet, and — most of all —
keep using this program. Try every example; work the
results out on paper, and see if you agree with the final
display. Examine how the binary data works, how the
instructions perform, and what the flags mean.

Learning the 6809

73

74 Lesson 8

Making things happen on your 6809-based Color
Computer is the point of all this. I've created this series
because your computer is a special machine — not just an
isolated microprocessor, but an interrelated group of
components capable of video, sound, storage and
communication, with add-ons like joysticks and disks and
printers. So while you're making your way through the
intricacies of the 6809 itself, 'm also going to provide you
with the information you need to use the whole
computer.

That means I've got to talk about two things specific to the
Color Computer: memory maps and smart components.

The memory map of your computer describes the way its
65,536 individual addresses are organized . . . what goes
where. Simplicity is always important in laying out a
memory map, and that holds true for the Color Computer.
I've reproduced the Color Computer memory maps in the
documentation so you can follow along.

There are a few special considerations in this machine, but
the memory map I'll describe is what’s set up when you turn
the power on. Read/write memory — also known as
random-access memory, or RAM — is located (talking in
hexadecimal now) from address $0000 to $7FFF. That’s
32K of memory; if you have a 16K computer, your RAM
ends at $3FFF. $4000 to $7FFF remains unused until you
fill it.

The BASIC language is made up of machine-language
instructions and data, so it too occupies part of the memory
map. BASIC is broken up into two halves, each half 8K
long. From hex $8000 to $9FFF you will find Extended
Color BASIC, and from hex $A000 to $BFFF you will find
Color BASIC.

Starting at $C000 is a blank space. As far as the processor is
concerned, no memory is “‘blank” per se, but an off-the-
shelf Color Computer doesn’t have anything connected at
$C000. However, when you plug in a ROMpack cartridge,

Learning the

Practical application of your
6829 learning wmeans knowing
something about this particular
6883 enviromment. fArd that
means knowing the Color Computer
better. It's mot the only 6889
machine there is, so you'll need
to learn all new details if you
purchase a MWhatzit-99 or the

Compublob.

tWhat do you call the
description of how the

computer's designers have
arranged its mesory?
R memory map.

How many memory locations are
there in the Color Computer?

65,536 locations.

+ What is the address range of
the Color Computer, in hex?

$8008 to SFFFF.

How many °"K" is the address
range of the Color Computer?

BAK.

Where in the memory map is
read-write {random—access)
wemory, or RAM, in the Color
Computer on a 16K machine?

RAM is located from SOBOE to
‘mﬂ

6809 =

Map and vectors

COLOR COMPUTER MEMORY MAP

FFoQ@
CARTRIDGE
ROM
Cooe
BASIC
ROM
AQQ0
EXPANSION
ROM
8030
4000
A
3060
32K RAM
2000
16K RAM
1000
060d
4K RAM ?NORMAL VIDEO
0400 DISPLAY
0000
HEX COLOR COMPUTER
ADDRESS USAGE
FFFFORBFFF| 277 |RESET VECTOR LSB
FFFEORBFFE] A® |RESET VECTOR MSB
FFFD OR BFFD| &9 NMI VECTOR LSB
FFFCORBFFC! &/ NM! VECTOR MSB
FFFBORBFFB| ®¢& |SWI1 VECTOR LSB
FFFAORBFFA| o/ SWI11 VECTOR MSB
FFFOORBFFe | oC IRQ VECTOR LSB
FFFBORBFF8 | O/ IRQ VECTOR MSB
FFF7 ORBFF7 | &F FIRQ VECTOR LSB
FFF6 OR BFF6 | O/ FIRQ VECTOR MSB
FFF5 ORBFF5 | @% SWI2 VECTOR LSB
FFF4ORBFF4 | Of SWI2 VECTOR MSB
FFF30RBFF3| A¢© |swi3 VECTOR LSB
FFF2 ORBFF2| &/ SWI3 VECTOR MSB
76 Lesson 9

MEMORY MAP

Memory Map

COURSE

FINE

MC6809E
Address

\

{ $FFFF

\\\

MC6809E - 8
Vectors,
SAM << <
Control,
1/0

ROM2**

{(8=3)

ROM1*#

(§=2)

ROMO**

(s= 1)

i
RAM_
(S=0if RIW = 1)
(S=7if RW = 0)

a.

N
Page 0

i Vgl
Page 1

$FFO0

=~ —-—-1<$Co00
————— ~1<$A000

————— < $8000

—=r - -1<$4000

-~1<$1000
3

<$0000

S2,
S1, S0 MC6809E
Value Address
\/

Label

{dddd

...
"
N

FEFE

RESET

FEED

EFEC

NMI

FFFB

EEFA

SwWi

FFFS

RQ

FEF8

EFF7

FIRQ

FEF6

FEFS

FFF4

Swi2

FFF3

FEF2

SWI3

BrZr2r R ize
K [Pk 0 kn KO e 6 o K K [0 e

FFE3

EFFQ

FEEF

FFEE

FFED

FEEC

Reserved

FFEB

for future

FFEA

MPU

FFES

FFES

enhancements.

FFE7

EEEE

Do not use!

FEES

FFE4

FFE3

EFEQ

FFE1

NN

FFEQ

FEOF

Map

FFDE

Ty Type

Definitions
e

'—*GAKS Static

64KD
[=k
=0 |

% Dynamic
—4K

FAST

FEDD

FFDC

Ml Memory

FFDB

1]1]01]0 FAST

Transparent

Size

FFDA

MO

t{o|1]0 Refresh

—AD. 2
| [~sLow

DS
FFD8

RI MPU

1 11014

FFD?.

RO Rate

FFDG

1101170

FFDS5

FED4

P1 Page #1

FFD3

FED2

Fo

EFD1

FEDQ

F5

FFCF

@
#
=

FFCE

k4 Display

FFCO

EFFCC

F3 Offseat

FECB

(Binary)

EFCA

F2

FECS

FECB

F1

FEC7

FFCE

FO

} MPU Addresses from $0000 tc $7FFF
Apply to page #1 if P1 = ‘1’

Address of “Upper-Left-Most
Display Element = $0000 + (V2K Offset)

DMA
G6R, G6C
G3R
G3C

G2R
G2C
|I_G'IC, G1R

[T Al, AE, S4, S6

FECS

FEC4

vz VDG

1 1 1 1T1i0j0j01]10

EFC3

Mode

FFC2

Vi

1 1107011 11010

FECT

(SAM)

FECQ

Vo

kn s K
nmnbnmn oo oo Pl o Pl P Plel*

LU S O O+ I I O O A}

(4

EFBF

Reserved

FF6Q

Do not use!

FFSF

07777777777

U

~

@
"
2

FFa3

FFa2

1102

FFa1

FF4Q

FF3F

-

~

4

FF23

{S

]
g

FF22

1101

FF21

7

FF20

FF1F

o ~

£FQ3

(S = 4)

FFQ2

1/0p(Slow}

%

FFQ1

FFQ0

Reserved for Future
Control Registers or Speciat /O

*Note:
M.S.
LS.

Most Significant
Least Significant

I

S
c
S

W

1]

Set Bit
Cilear Bit
Device Select value

4xS2 + 2xSt + 1xS0

**May also be RAM

$ (All bits are cleared when SAM is reset.)

Learning the

77

Port map

COLOR COMPUTER MEMORY MAP (cont’d)

FFO@ — FF@3 PIA U8

BIT ¢ = KEYBOARD ROW 1 and right joystick switch
BIT 1= KEYBOARD ROW 2 and left joystick switch
BIT 2 = KEYBOARD ROW3
FF@Q BIT 3= KEYBOARD ROW 4
BIT 4 = KEYBOARD ROW 5
BIT 5= KEYBOARD ROW &
BIT 6 = KEYBOARD ROW 7
BIT 7 = JOYSTICK COMPARISON INPUT

BITG . @=IRQ" to CPU Disabled
C lofthe H |

ontrol of the Horizonta 1=IRQ* to CPU Enabled

sync clock (63.5 microseconds)

BIT 1 @=Flag set on the falling edge of HS
| t |
nterrupt Input 1=Flag set on the rising edge of HS
BIT 2 = Normally 1: @=Changes FF@@ to the data direction register
BIT3=SEL 1: LSB of the two analog MUX select lines

FF@1 BiT4=1 Always
BIT5 =1 Always
BIT 6 Not Used
BIT 7 = Horizontal sync interrupt flag

BIT 0= KEYBOARD COLUMN 1
BIT 1= KEYBOARD COLUMN 2
BIT 2= KEYBOARD COLUMN 3
Frg2 | BIT 3= KEYBOARD COLUMN 4
BIT 4= KEYBOARD COLUMN 5
BIT 5= KEYBOARD COLUMN &
BIT 6= KEYBOARD COLUMN 7
BIT 7= KEYBOARD COLUMN 8

BITO . @=1RQ" to CPU Disabled
Control of the field sync clock 1=IRQ* to CPU Enabled
BIT 1 16.667 Ms Interrupt Input 0= sots flag on falling edge FS
1= sets flag on rising edge FS
FFe3 { BIT2=NORMALLY 1: 0= changes FF02 to the data direction register
BIiT3=SEL 2: MSB of the two analog MUX select lines
BiT 4=1 Always

BIT5 =1 Always
BIT 6 Not Used
BIT 7 = Field sync interrupt flag

78 Lesson 9

FF20 — FF23

FF20

FF21

FF22

FF23

1

|
|
|

\

Peort map

COLOR COMPUTER MEMORY MAP (Cont'd)

PIA U4

BIT @ =CASSETTE DATA INPUT
BIT 1 = RS-232 DATA OUTPUT
BIT2=6BIT D/A LSB
BIT3=6BIT D/A

BiT4=6BIT D/A
BIT5=6BITD/A
BIT6=68ITD/A

BIT7=6BIT D/A MSB

BITO
Control of the CD

BIT 1 RS-232 status Input

BIT 2 = Normally 1:
BIT 3 = Cassette Motor Control:
BiT4 =1 Always

BIT5 =1 Always

BIT6 Not Used

BIT 7 = CD Interrupt Flag

BIT @ = RS-232 DATA INPUT

@=FIRQ" to CPU Disabled
1 = FIRQ" to CPU Enabled
@ = set flag on faliing edge CD
1 = set flag on rising edge CD

@ = changes FF20 to the data direction register

@=O0FF 1=0ON

BIT 1 =SINGLE BIT SOUND OUTPUT

BIT 2= RAM SIZE INPUT
BIT 3 =VDG CONTROL OUTPUT
BIT 4= VDG CONTROL OUTPUT
BIT 5= VDG CONTROL QUTPUT
BIT 6 = VDG CONTROL OUTPUT
BIT 7=VDG CONTROL OUTPUT

BITO
Control of the Cartridge

BIT 1 Interrupt Input

BIT 2 = Normally 1:
BIT 3 = Six BIT Sound Enable
BIT4 =1 Always

BITS =1 Always

BIT6 = Not Used

BIT7 = Cartridge Interrupt Flag

LOW = 4K

HIGH = 16K
Css

GM@ & INT/EXT
GM1

GM2

A/G

@ = FIRQ™ to CPU Disabled
= FIRQ* to CPU Enabled

@ = sets flag on falling edge CART*
1 = sets flag on rising edge CART™

@ = changes FF22 to the data direction register

Learning the 68C)9

79

The SAM

% What is the range of RAM on a
32K machine?

RAM is located from $0088 to
$TFFF.

¥ The Color Computer’s operating
language is located in what kind
of mewory?

Read-only memory, or ROM.

The Color Computer's operating
language is in two linked parts.
What are they called?

Color BASIC and Extended Color
BASIC.

* Where is Color BASIC in the
senory sap?

From $h082 to $BFFF.

Where is Extended Color BASIC
in the mewory map?

From $8088 to $9FFF.

What is located from $COB8 to
$FEFF on an off-the-shelf the
Color Computer?

Nothing; the space is reserved.

What is the space from $CO00
to $FEFF reserved for?

For plug-in cartridge RDM, also
called ROMpacks or program

cartridges.

What is located in the memory
wap from $FFO8 to $FFFF?

MCGBBIE vectors, SAK control and
1/0.

What is the SAM?

The Synchronous Address

Multiplexer.
+ What does 1/0 mean?

1/0 means input/output.

80 Lesson 9

the addresses from $C000 to $FEFF are decoded for use by
the ROMpack. Notice I said $C000 to $FEFF.

There is a block of memory from $FFO00 to $FFFF that is
very special. In the back of your documentation, find the
data booklet entitled MC6883, and turn to page 17. Here is
atable marked Memory Map Type #0. Look at the left half,
marked ‘“course” (meaning a course breakdown of the
memory map). You can see the layout of the address blocks
I've described so far, and at the very top, a small block
called “MC6809E vectors, SAM control, I/0”. A blowup of
this tiny block is shown on the right side of the figure,
marked “fine”.

Before looking at the detailed map, I want to tell you about
the SAM. You may have heard this term before; I was
mystified the first time I encountered it. You're holding the
SAM’s data booklet now. SAM means “Synchonous
Address Multiplexer”, a mouthful that breaks down to
three simple concepts. It’s synchronous because it is
completely synchronized with the operation of the 6809
processor itself, as well as with the video display, memory,
and so forth. It deals with addresses, its main task. And itis
a multiplexer because it is the traffic cop, sending the
proper addresses to the correct memory blocks. If that
doesn’tinterest you, then let me say that, all because of the
SAM, your Color Computer is a 96K computer.

On to the map. Start from the bottom of the “fine” map.
You'll see three blocks from $FF0O to $FF5F marked 1/0,
meaning input/output. At these addresses — and more on
this later — are found the keyboard, joystick inputs,
cassette input and output, printer input and output,
cassette motor control, various high-resolution color
modes, and other computer control information. Also, the
plug-in disk pack and different peripheral devices use
these input/output addresses. That’s a lot to know about,
but the many capabilities of the Color Computer are found
in these input/output blocks.

Next up on the map is a group of addresses ($FF60 to
$FFBF) which are not defined yet by the manufacturer of
the Synchronous Address Multiplexer, the SAM.

Up from there at address $FFCO begin a unique series of
SAM registers. There was a standard joke among memory
engineers that they’d developed the read/write memory —
where information could be stored and retrieved — and the
read-only memory, where information was permanently
fixed and could only be retrieved — but hadn’t developed
the write-only memory, where information could be stored
but couldn’t be retrieved. Well, the SAM’s got it. Actually,
these memory locations are called write-only registers, and
their job is to perform computer control functions. Your
program keeps track of what’s been done, since these are
infrequently accessed items. Interestingly, what data you
store in these registers is completely irrelevant . . . all that
matters is that you store something there.

@@ﬁ%

Included in the write-only registers are six addresses to set
and reset the eight graphics display modes; 14 addresses to
define the area of memory to be displayed on the screen;
and 12 addresses to define which 32K blockor RAM will be
used in a 96K machine, what processor speed will be used,
how much memory is available, and which memory map
arrangement will be used.

All of these registers are set up by Color BASIC when the
power is turned on, but you can change them at any time.
I've got a little BASIC program to play around with the
video graphics modes. Get it loaded, and then I'll tell you
about it.

Program #14, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

REM * USING Al.L VIDEG MODES
REM % PORT $FF2& SELECTS VIDED
FODRX=8TDi1Z8STERS
POKE&HFFEZ, (X OR 4)
REM # ADDRESSES 70O CLEAR MDODE
Cl=&HFFCQ:CE=&HFFCZ:C3=&HFFC4
REM * ADDRESSES TO SET MODE
S1=&HFFC1 :52=&HFFL3:83=&HFFCS
REM (2T I TTI LI S22 3 %3
@ REM # BEGIN CHANGING MODES =
REIM 396 3696 36 96 96 96 36 96 36 36 36 3 96 3 96 9 36 % % 6 39
12 POKEC1, @:POHECE, 2: POKECS3, @
13 GAOsSUR3Q
14 POKES1, @:POKECEZ, @: POKECS, @&
15 GOSUR3Q2
16 POKEC1, @:POKESE, @: POKEC3, @
17 GOSUR3@
18 POKESL, @:POKESE, @: POKECS, @
19 GOSUR3A
Z@ POKEC1, @: POKECE, @: POKESS, @
<l GOSUR3R
‘2 PDKES1, @: POKECE, @: POKESS, @

=g~ o Lo

s
ke

[

23 GOSUER3@

24 POKEC1, @:POKESE, @: POKESS3, 2
25 GOSUR3a

26 POKES1, @: POKESE, @: POKES3, @
27 GOSUB3&

28 NEXT

&3 END

3@ FORN=1TO3@@:NEXT

31 RETURN

LIST lines 1 to 4. Line 2 says “Port $FF22 selects video”.
What’s port $FF22? This is another bit of jargon. The
electronic circuits which allow the 6809 processor in the
Color Computer to use its keyboard, cassette, video, etc.,
are called “peripheral interface adaptors”. There are two
peripheral interface adaptors, or PIAs, built into the

Learning the

Ports

* What are the 1/0
{input/output) addreses?

$FFOR to SFFGF.

Name some of the input/output
devices located at the 1/D
addresses frow $FFOR to $FFOF.
Keyhoard, Joystick inputs,
cassette imput and output,
printer input and output,

cassette wmotor control, sound
output, high-resolution color
wode control, and other computer
control information.

* What does SAN mean?

Synchronous
Multiplexer.

Address

#The G5AM contains memory
locations reserved for control;
what kind of registers are
these?

Write-only registers,

& Nawe some of the purposes of
these write-only registers.

To set or reset eight graphics
display modes; to define the
area of mewory to be displayed
on the screeny to define which
3K block of RAM will be used in
3 96K sachine; to detersine what

processor speed will be used; to
indicate how much wemory is
available; to specify which
mewory map arvangesent is to be

used.
What does SAM mean?

Synchronous
Multiplexer.

+ What does PIA mean?
Peripheral Interface Adaptor.

What is the proper term for
*setting up® a computer device.

Configuring.

6809 o«

PIA, VDG and graphics

% What is the ters for mewory
addresses that open to the
cutside world?

Ports.

% How many ports does the Color
Computer have?

Four,

What are the Color Computer
port addresses?

SFFOR, $FF&2, $FF28 and $FF22.

+ What is the term for "setting
up® a computer device?

Configuring.

What fow PIR addresses
configure the four port
addresses?

$FF01, $FFO3, $FF21 and $FF23,

+ What are the port addresses
configured as?

Input or output.

How does the processor semd or
receive inforsation ({input or
output information) with respect
to the outside world?

By loading or storing data at
the port mewory addresses.

At port $FF22, what is the
purpose of bit 3?

To choose one of two color
sets.

obop 6883
@S5y, N
g 5 §

00 [0

82 Lesson 9

computer, and each is given four memory addresses. The
first PIA, for example, uses addresses $FFOO through
$FF03. These addresses — and I won’t spend a lot of time
on this right now — have two functions. $FF01 and $FF03
— the odd-numbered registers — are called “control
registers”, and are used for setting up (the word for that is
“configuring”’) the PIAs. The even-numbered addresses
$FF00 and $FF02 open to the outside world. They are
called *“ports”.

What this means is that ports $FF00 and $FF02 of the first
PIA are configured by addresses $FF01 and $FF03. They
are configured as input or output. That way the processor
canreceive or send information to the outside world whenit
executes machine-language instructions which load or
store data at those memory addresses.

In this example, the processor can address the second PIA
at $FF20, $FF21, $FF22, and $FF23. The PIA
configuration using $FF21 and $FF23 has already been
done at power-up, so that's not your concern for the
moment. What you need to know is this: in address $FF22
are the video graphics modes. One of the two color sets is
selected by bit 3; graphics mode zero is turned on or off by
bit 4; graphics mode one is turned on or off by bit 5;
graphics mode two is turned on or off by bit 6; and the
alphanumeric or graphic choice is made by bit 7. So each of
the most-signficant 6 bits of address $FF22 has a different
purpose in setting up the video display.

Unless you’ve spent a lot of time cracking your brains over
your BASIC manuals, I probably just dropped another
bucket of unknowns in your lap — the graphics modes. It
turns out that the Color Computer is a chain of “smart”
circuits — the 6809E processor connects to the 6883
synchronous address multiplexer which in turn connects to
the 6847 video display generator and the 6821 peripheral
interface adaptors. Forget all those numbers. Just dig out
your old COLOR BASIC manual — that’s the COLOR
BASIC manual, not the Extended Color one — and turn to
page 256. RUN the program you’ve got in your computer
now, and while it’s running, read pages 256 through 266. If
you've been spoiled by the Extended Color BASIC
graphics modes, then you probably forgot all about these
pages in that old Color BASIC manual. So dig in now.

o847 2] e BASKC
N7 oRPr
vod ¥ (Pia] @ fial §)3

|
|
(—
CJ
]
1
1

65495

M

S

By now I expect that the use of decimal numbers in the
Color BASIC manual obscures rather than illuminates how
all this works. You’d probably like to take a break, but don’t
do it yet. While this information is stiil fresh, I'd like you to
RUN once again the program in the computer.

What you see when you run the program are all the possible
combinations of alphanumeric and graphic modes that can
be created by the combination of the synchronous address
multiplexer (that is, the SAM) and the video display
generator (that is, the VDG). I've already mentioned about
port $FF22 in the memory map. Just to review, bits 3
through 7 of that byte can be used to select one of two color
sets; turn graphic modes one, two and three on or off; and
select between alphanumerics and graphics.

The choice of bits you turn on or off at port $FF22 can then
be combined with the SAM’s video registers to offer
additional possibilities for display. To get at them, though,
you have to understand how the SAM’s peculiar “write-
only” registers work. You still have that BASIC program in
place. LIST lines 5 through 8. I've defined six variables
here. C1, C2 and C3 mean clear 1, clear 2 and clear 3, and
are defined as the three even-numbered addresses $FFCO,
$FFC2 and $FFC4. S1,S2 and S3 mean set 1, set 2, and set
3, and are defined as the three odd-numbered addresses
$FFC1, $FFC3 and $FFCS5. It turns out that writing to an
address, no matter what the data stored, either sets or
resets a condition within the SAM.

Some of you may have used the high-speed mode on your
Color Computer, sometimes called the Vitamin Q poke.
You probably wrote it, POKE65495,0 and to get normal
speed, POKE 65494,0. Whenyou did that POKE, you were
actually executing a Store Accumulator to memory location
$FFD7 for high speed and $FFD6 for normal speed.

Flip to the SAM data booklet (the booklet marked
MC6883), and return to page 17. Locate addresses $FFCO
through $FFCS5. These are the video display modes, the
VDG modes. At the right of the addresses, the mode
combinations are shown in binary. To turn on any of these
modes, the binary data has to be expressed as a trio of
addresses — either the clear address (the even ones) or the
set addresses (the odd ones).

Likewise, locate addresses $FFD6 and $FFD7. They are
part of a group of addresses that affect speed of the
computer. At power up, your computer is in the “slow”
mode. By writing to $FFD7, you set the “A.D.”, or address
dependent, mode. In that mode, your BASIC ROM zipped
along at double speed, and your RAM just stayed the way it
was. Had you poked $FFD8, you would have gone into the
“fast RAM” mode, losing both the video display and the
refresh your memory needs to keep its information.

You don’t need the BASIC program now, so <BREAK>
out of it if it’s still running. I want to show you what happens
when you use the ‘“fast RAM” mode at address $FFDS.

Learning the

Vitamin Q

% What is the purpose of bits 4
through 6?

To select among the graphics
modes.

What is the purpose of bit 7?

To select either alphanumerics
or graphics.

* What does PIA mean?

Peripheral Interface Adaptor,

What is the terw for mesory
addresses which open to the
outside world?

Ports.

What does SPAM mean?

Synchronous Address
Multiplexer.

#What sets or vesets a
condition within the S5AM?

Writing to a SAM address
{register).

* What sets or resets video
display mades?

Writing to the 5AM video display
addresses (registers).

¥ What are the SAM video display
registers?

$FFC8 through SFFCS.

What changes the computer's
processing speed?

Writing to the 5MM clock rate
addresses (registers).

* What are the 5AM clock rate
registers?

$FFDG through $FFDS.

6807 s

Display offset

% What is the normal speed of
the Color Computer ?

-89 Wz (894,886 pulses per
second).

% bheve is the norsal vides
display screen on the Color
Computer (in decimal and hex)?

At 1824 (40408 hex).
What does VDG mean?
Video Display Gemerator.

$hat deterwines the screen
being displayed?

The S5AM display offset addresses
{registers).

* What are the display offset
registers?

$FFLE through $FFD3.

% How many bits of the 16-bhit
address are selected by the
display offset registers?

Seven,

* How many combinations of 7
bits are possible?

i28.

How many display screems are
possible by using the S5AM's
display offset addressing
technigue?

128,

How do you create a display
offset address?

By writing to the SAM display
of fset registers.

How do you create the offset
address 0PO0099?

By writing to all the

even—numbered S5AM display offset
addresses (registers).

84 Lesson 9

$FFDQ is 65497 decimal. So type POKE 65497,0 and hit
<ENTER>. POKE 65497,0.

Screen freaked out, right? Hit your Reset button on the
back right to get back your screen. Whether or not the
program is still intact depends, for technical reasons, on
whether you have a 16K, 32K or 64K machine.

There’s some more to find out about the SAM, so I have
another program for you.

Program #15, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start and try again. For severe loading problems,
see the Appendix.

i CLS
& PRINT" REDIRECTING THE VIDEO DISOLAY":PRINT

RS,

3 CO=8HFFCE:C1=&HFFCB:CE=&HFFCA:;CI3=/HFFLCC: C4=& W FLE :CS=&HFFDQ: CE

=&HFFDZ

4 B@=&HFFC7:81=&HFFC9:S2=&HFFCR:53=8HFFLD: S4=kHFFCF : SS5=&HFFD1 : 86

=&HFFD3

S INPUT"THE NORMAL SCREEN IS LOCATED AT $Q4@@ TO $aSFF.

ALLOWS THE SCREEN TD POINT TD ANY PLACEIN MEMORY.
8 SCREENSIN ALL.
EN" ;1A%

& A=VAL (A%) : IFA(ADRAY 127 THENCLS : GOTOS

7 EB&=FIX(A/64)

8 ES=FIX((A-(B&*E4)) /32)

D E4=FIX{ (A~ (BE*E4) ~ (H5*32)) /16)

12 B3=FIX ((A~(BE*64) — (ES*3E) ~ (B4*16)) /8)

11 BE=FIX{{A~ (BE*64) — (ES#3Z) — (B4#16) ~ (BEIHB)) /4)

12 BI=FIX{({A-(B6#64) ~ (B5*32) —(B4*16) — (R3#8) - (BE*4)) /)
13 B@2=FIX (A~ (BE*64) -~ (BI3*#32) - (B4*16) — (B3%8) — (RE%*4) — (R1%2))

14 IFRO@=@QTHENPOKEC®@, AEL.SEPOKESR, @
13 IFR1=@THENPOKEC1, QELSEPOKES1, @
1& IFRE=@QTHENPOKECZ, @ELSEPOKESE, @
17 IFB3=@THENPOKECS3, QELSEPOKESS, @
18 IFE4=@THENPOKEC4, QELSEPOKES4, &
13 IFBES=0THENPOKECS, QELSEPDKESS, @
2@ IFB6=@THENPOKECSE, QEL.SEPOKESE, @
1 FORN=1TOZ@@@:NEXT

2 BOT0OL

The object of this program is to manipulate the SAM
“display offset” registers. This nifty technique makes it
possible to display 128 entirely different screens of
information, each 512 (hex $200) bytes long.

RUN this program, and enter 2 in response to the prompt.
There is a pause, and the cursoris back. Of the 128 possible
screens, the one you normally look at the screen #2. Now
enter 0. Aha. A screen full of garbage and wiggly characters
appears before you. Try that again; enter 0. Screen #0 is
what you see, and screen #0 reveals pages $00 and $01 of
your memory. Remember the Direct Page register? The
Color Computer’s BASIC sets the DP register to $00,

meaning what you're seeing is all the down-and-dirty work’

BASIC does to count, calculate, delay, and so on.

Now I'll show you what’s happening there. Turn once again
to page 17 of the SAM data booklet, where the detailed

THE Sm
THERE ARE iz
ENTER A NUMBER FROM @ TO 127 7O DISPLAY A SCRE

memory map is shown. Addresses $FFC6 to $FFD3 are
called a display offset value, and a strange formula is given,
reading “Address of upper-left-most display element =
$0000 + (1/2K * offset)”. Obscurity won’t triumph, I'll tell
you. What this means is that you can display any area of
memory directly on the screen, in even 512-byte blocks.

Addresses $FFC6 to $FFD3 are those write-only SAM
registers again, used here to create the most-significant 7
bits of an address. Writing to the even-numbered registers
starting with $FFC6 clears bits to zero; writing to the odd-
numbered registers sets bits to one. So if you store
information in all the even-numbered registers, you create
the binary number 0000 000 . . . 7 bits long. If you store
information in all the even-numbered registers except
$FFC8, but store information inthe odd-numbered register
$FFC9, and you create the binary number 0000010. Those
are the most significant seven bits of addresses 0000 0100
0000 0000 through 0000 0101 1111 1111, Those binary
addresses translate into $0400 to $05FF — the address of
the normal video screen.

That's all I have for you this time. I would like you to LIST
this program, and get an idea of how to manipulate the
addresses. Take a break, play with the program, and then
come back for the next session; you’ll be translating these
concepts into an assembly-language subroutine.

To review: the Color Computer is more than a smart 6809
processor, and so effective programming on this machine
requires knowing the rest of the smart devices inside it.
These devices include a video display generator (VDG) to
provide alphanumeric and graphic displays in several
colors; a synchronous address multiplexer (SAM) to
coordinate and synchronize events involving input/output,
display, and memory addressing; and two peripheral
interface adapters (PIAs) to provide input and output for
keyboard, cassette, printer, video, sound, and other
computer control functions.

These smart devices all have control signals which are
connected into the memory map and given specific
addresses. By storing information at these addresses, your
programs can have control of all the computer’s
functions.

Please review this lesson, and familiarize yourself with the
programming aspects presented in the data booklets for
the M(C6883 SAM, the MC6847 VDG, and the MC6821
PIA.

After you've finished trying out and examining this
program, there’s one more at the end of the lesson. Load,
LIST and RUN it. It should give you some ideas.

Summary

What are the even—numbered
display offset registers?

SFFCH, SFFCB, OFFOR, $FFLL,
SFFCE, $FFD@ and $FFDR,

How do you create the display
offset address 11111117

By writing te all the
odd-nusbered SAM display offset
registers.

¢ ihat are the odd-nusbered SAM
display offset registers?

SFFC7, $FFC9, $FFCB,
SFFCF, $FFDI and $FFD3.

* How do you create the diplay
offset address 81181187

By writing to a combination of
odd and even addresses: $FFCH,
$FFC9, SFFCB, SFFCC, $FFCF,
$FFDI and $FFD2,

What is the address of the
first byte displayed on the
screen with the offset address
pliei1e?

The first byte {the
upper—left-most byte) displayed
is $6C08.

What does VDG mean?

Video Display Generator.

* What does PIR mean?

Peripheral Interface Adaptor.

& What does SAM mean?

Synchronous Address

Multiplexer.

What is located in the lower
half of the Color Computer's
memory map (from SO0 to
$7TFFF)?

Read/write memory (random-access
memory), or RAM.

Learning the 6809 85

Program #16

ihat is located froe $0008 to
$9FFF?
Program #16, a BASIC program. Turn on the power of your
) Extended Color BASIC computer. When the cursor appears,
Extended Color BASIC in type CLOAD and press ENTER. The computer will search (S)
read-only mewory (ROM). and find (F). When the cursor reappears, LIST this program. if
the program is not similar to the listing, or if an 1/0 error occurs,
+ What is located frow $A88@ to rewind to the start of the program and try again. For severe
SBFFF? loading problems, see the Appendix.
Color BASIC in read-only wewory
(ROM) ., - . e e e
1 CLS:CLEARIQQ. 16592 PELEARS 1 X=& Q40
o GOSUR4Z:BOSUERSE : GOSURYS
* What is located from (082 to 3 BOSURSS :GDSURBE : GOBLEIT
SFEFF? 4 GOSUEGS:GOSUESE : GOBUET4 : GOSURID
5 GOSUR76: GOSURBE : GUSURD4 : BOBURIT
. A € GOSURBE:GOSURST
Nothing wunless a cariridge 7 GOSUBED4:GOSUE9D
read-only memory (ROM) pack is &8 BOSURI7:GOSUETS
plugged in. 3 DATA B7,FF,C7,E7,F7,C9, B7,FF, CA, B7, FF, CC, 39
i@ DATA B7,FF,C&,RB7,FF,C8,R7,FF,CE, E7, FF, CC, 39
. 11 DATA BY7.FF,C7,EB7,FF,068,H7,FF,CR, 57, FF,CC, 33
¥ What is located from $FFOR to Z DATA E7,FF.C6,R7,FF,C9,R7,FF,CR, B7,FF,CC, 39
$FFFF? 13 DATR BR7,FF,C7,E7,FF,09,R7,FF,CE, B7,FF,CC, 33

14 DATA E7,FF,C&,E7,FF,C8, K7, FF,CA, K7, FF, CD, 39
1S DATA B7,FF,C7,RE7,FF,C8,E7,7F,CA, k7, FF,CD, 33
MCEBB3E vectors, S comtrol, | Copyo16293 TO 16383:READAS:A=VAL (" &H"+A%) 1 DOKEX, £ NEXT
and 1/0. 17 DEFUSR1=16293
18 DEFUSRE=16306
* What do you call the 13 DEFUSR3=16319
description of how the oo DEFUSRA=I63SS
computer's designers have DEFUSR6=16358
arvanged its wewory? DEFUSR7=16371
FORA=1TO4@
GOSUE1@@ : GOSUE 128
GOSUE1@1 : GOSUE128
GOSUE1@& s GOSUE128
GOSUE103 : GOSUE128
NEXT
FORA=1TDZ@
GOSUE1@3 : GOSUE128
GOSUE1@4 : GOSUR1 @A
33 NEXT
34 FDRA=1TOZ@
35 GOSUB1®4:GOSURIQ8
36 GOSUE1@5:G0SUR108
37 NEXT
38 FORA=1TOZ@
35 GOSUE1@S:GOSUE188
40 GDSUE1@6:GOSUE128
41 NEXT
42 GOTD24
43 REM
44 PRINTEG, "* * * * * * * * "
45 PRINTSTRINGS (31,32) "%";
46 PRINT:PRINT:PRINT %"
47 PRINTSTRING® (31, 32) "%";
48 PRINT:PRINT:zPRINT"*"
49 PRINTSTRING® (31, 32) "#";
S@ PRINT:PRINT s PRINT"#"
S1 PRINTSTRINGS (31,32) "%y
S& PRINTSTRINGS (32, 32) ;
53 PRINTY = #* * * * * * * Mz
S4 RETURN
55 PRINTE@," + * * * * * * *4
S6 PRINT:PRINTSTRINGS (31, 32) "%";
S7 PRINT"#*":PRINT:PRINT
S8 PRINTSTRING$(31,32) "%"3
S5 PRINT"*":PRINT:PRINT
6@ PRINTSTRINGS (31,32) "%"3

The memory map.

O S OUD~ND U LR -

[CSIRN IS CS T O (U I AT SO O O WO SO]

86 Lesson 9

61

&z
&3
&4
65
&6
&7
68
69
7@&
71

7e
73
74
75
76
77
78
79
8@
a1

8z

33

ETU
iz
1@l
1@z
1@3
124
185
126
1@7
ia8

Program #16

PRINT"*" :PRINT : PRINT
PRINTSTRING® (31, 3&) " %"

PRINT" * * * * * * * M
RETURN

PRINTEZ, " * * * * * * * *
PRINT:zRRINT %"

PRINTSTRING® (31, 32) "%,

PRINT: PRINT:PRINT " %"
PRINTSTRING$ (31, 32) "%

PRINT:PRINT: PRINT" %"
PRINTSTRING$ (31, 32) "%";
PRINT:PRINT:PRINT " %"

PRINT" * * * * * * * "
POKEL133S, 126

RETURN

PRINTER, v * * * * * * * *" g
PRINT" %" :PRINT:PRINT
PRINTSETRING® (31, 32) "%y
PRINT"*" : PRINT: PRINT
PRINTSTRING$ (31, 33) %" ;

PRINT"*#" :PRINT : PRINT
PRINTSTRING$ (31, 32) "%

PRINT"”#" : PRINT

PRINT™ * * * * * * *" 1 : POKEL1S3S, 96
RETURN

PRINTBEES, "the message can be made:
PRINT®132," TO FLICKER AND FLASH";
PRINT®196, STRING$ (&3, 191)

PRINTEZEQ, " GREEN ((";
PRINTEEZ9Z, " MOUNTRIN®
PRINTE3Z4, " >) MICRO";
PRINT@388, STRINGS (23, 191) §

RETURN

PRINT®196, STRINGS (23, 2@7) ;
PRINT®388, STRINGS (23, 207) 3

RETURN

PRINT®13Z," TO flicker AND flash':
RETURN

X=X+&H2@@ : Y=&H@4@@: FORG=X TO X+S512:POKEQR, PEEK (Y) :Y=Y+1:NEXT:R

RN

M=USR1 (@) : RETURN
M=USRZ (@) : RETURN
M=USR3 () : RETURN
M=USR4 (@) : RETURN
M=USRS (@) : RETURN
M=UGR6 (@) : RETURN
M=USR7 (@) : RETURN
FORN=1TOS@@: NEXT: RETURN
FORN=1TO4 :NEXT : RETURN

87

88 Lesson 9

P CLEAR 1

7%

_BATIC Drowan |

HIR

FACLTTON

exT Basic || ExT msic

COLOR_ BASIC COLOR BASIC

CARTRIDGE CARTE|DGE

NOT USED NOT USED
P CLEAR >

BASIC. | PRCRAM

il

EXT. BASIC EXT BASIC
crbc| | coon mc|
CARTRIDGE CARTRIDGE
NOT UsED MNOT USED

Welcome back. I hope you’ve had a little fun with the final
program in the last session. If you took the time to contrast
the listing of that program with the previous one, you may
have noticed a group of hexadecimal numbers and a series
of USR routines in place of the BASIC POKEs. Remember
that the synchronous address multiplexer — the SAM —
uses write-only registers that are located in the upper area
of memory. Fourteen of those addresses are used to set or
reset the individual binary digits of a 7-bit video display
address.

Turn back to the last program listing. PCLEAR4 in the first
line is intended to release memory for Extended BASIC’s
high-resolution graphics. What it actually does is move the
BASIC program itself in memory, freeing a large block
memory space between $0600 and the start of the BASIC
program. The way I've arranged the screens is first to print
them on the screen, meaning they appear in memory at
$0400 to $O5FF, the usual address of screen memory when
you turn the computer on. The info is printed on the screen
by seven subroutines, and then, byte by byte, POKEd into
memory at $0600, $0800, $0A00, etc., in blocks of 512
bytes.

The screens are then prepared. All that remains is to
redirect the video display by changing the video address in
the SAM. My earlier program POKEd the changes in place,
but the changes happen too siowly in BASIC. The results
are illegible, with unwanted screens flickering by between
POKEs. So I've set up some simple machine-language
subroutines, which you can see in raw form in lines 9
through 15.

I'd like you to read these. Turn to your MC6809E data
booklet, and open to pages 28 and 29. The first
hexadecimal byte in the program is $B7. Look through the
data booklet’s numerical listing, and you find that B7
corresponds to STA, or Store A Accumulator, in the
extended addressing mode. The extended addressing
mode, as you know, means that the two bytes following the
opcode form an address where the data is loaded from or

Learning the

Coming into this lesson with
concepts securely in your mind,
you'1ll be solving a problem by
structuring and programing a
useful piece of software,
Review comes first, then you'll
get right into it.

*# What does
statement do?

the BASIC POKE

It directly sanipulates wewory,

¥ What is the purpose of BASIC's
PCLEAR statewent?

To release nEWOrY for
high-resolution graphics.

*# What controls the video
display address?

SAM registers,

Where is the video screen
located in the norsal Color
Computer?

fit 8408,

+ Homw is the address

deterwined?

By writing to the SAM display
offset registers.

6809 s

BASIC and speed
% What is extended addressing?

fn addressing mode where the two
bytes following the opcode form
an address where the data can be
found.

* phat addressing wmode is
utilized by STR $FFC7?

Extended addressing.

* Rewember that it’s the act of
storing — not the information
stored — into the SAN registers
that determines the result,
With that in mind, what action
is taken by:

STR $FFC7

STA $FFC9

STR $FFCN

STR $FFEC

STA $FFCE

STR #FDO

STA $FFD2

The video display offset address
0080811 is selected,

What sewory address is this?
0608,

* The hex oprode for store A
accumlator extended is ¢H7.
What does $B7 06 8@ indicate?

Store A accumulator at mewory
atdress $8688 (STR $0608).

* What is the clock speed of the
Color Computer?

.89 Wiz (894,886 clock cycles or
pulses per second).

How long is one clock cycle?

1.11746 wicroseconds {millionths
of a second).

How many clock cycles does a
STA extended command take (the
information is in the data
booklet).

5 clock cycles,

90 Lesson 10

stored. The next two hex numbers in the program are $FF
and $C7. Your SAM data booklet will tell you that $FFC7 is
the address to set the least-significant bit of the video
display address.

Follow the remaining hex bytes in the listing. You'll see B7
FF C9, meaning Store A Accumulator at $FFC9; B7 FF CA,
Store A Accumulator at $FFCA; B7 FF CC, Store A
Accumulator at $FFCC; and 39. Check $39 in the numerical
instruction list on page 28 of the MC6809E data booklet.
It’s an opcode that will become very familiar — it is RTS,
Return from Subroutine.

So the first group of bytes in line 9 of the BASIC program
store the A Accumulator at $FFC7, $FFC9, $FFCA and
$FFCC. A check of the SAM registers will show that these
actions will place the binary value 0011 in bits 9,10, 11 and
12 of the video address. Bits 13, 14, and 15 (the most
signficant bits) are all zero, because that’s where they were
established when the computer was turned on. The full
result of this short subroutine, then is to create the video
address 0000 0110 0000 0000. I'll translate that for you.
It’s address $0600, the address of the first screen the
BASIC program POKEd into memory. By analyzing each
of lines 9 through 15, you will see that the video display
addresses created are $0600, $0800, $0A00, and so
forth.

These seven short machine-language subroutines, then,
are a quick version of the BASIC POKESs that were used to
redirect the screen in the previous program. The speed
here, however, is too fast to see. How fast is it? Glad I asked
that. Flip to page 31 in the MC6809E data booklet, and
look up the mnemonic STA. Under the heading
“Extended”, you'll find the opcode $B7. The next column
tells you that a Store A Accumulator Extended takes five
clock cycles. There are four Store A Accumulator
instructions in each video display switching subroutine,
meaning a total of 20 clock cycles. The RTS (Return from
Subroutine) takes 5 clock cycles. The whole subroutine
takes 25 clock cycles. At your Color Computer clock rate of
894,886 clock cycles per second, that means the
subroutine is finished with its work in .00002794 seconds
— 30 millionths of a second, about the time it takes the
electron beam to sweep halfway across the TV screen.

I want to close a knowledge gap now. Obviously I've been
talking about machine language subroutines in this BASIC
program. BASIC puts those subroutines into memory in a
very clumsy way. Look at the program listing. In lines 9
through 15 are a series of BASIC DATA statements in
which the hexadecimal numbers are treated as strings. In
line 16, have variable X select the memory area to be used;
in this case it’s 16293 to 16383, hexadecimal addresses
$3FAS to $3FFF.

The next step has the hexadecimal byte masquerading as a
two-character ASCII string read as variable A$. BASIC
identifies hexadecimal by the symbol “&H”, so “&H” is

LET A$= %"
LET 8=

SN AS
(o secomes L)
VAL(B8) s VAL (EHe3)

YAL (5%)=

198

concatenated with each two-character ASCII string. In this
way, BASIC can be tricked into taking the value of the
string, and that value can then be POKEd into memory. All
that happens in line 16. Seven machine-language
subroutine entry points are established in lines 17 through
23. Extended Color BASIC allows ten entry points
altogether named USRO through USR9; this program
defines USR1 through USR7 for the seven screens to be
displayed. Finally, lines 24 through 41 execute these
subroutines in a fancy series of FOR-NEXT loops, and
delay appropriately. By changing the order of the loops,

Video screens

+ How long is that?

3 times 1.11746, or 5.5873

microseconds.,

® How many S5TR extendeds is that
per second?

1000008 microseconds divided by
5.5873 per 5IR extended
instruction, or roughly 179,008

cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an [/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

3FRT aalaa ORrG $3FAS
3FAS R7 FFC7 @a112 SCRNL STA $FFC7
3FA8 R7 FFC3 aaize 87A $FFC9
3FAER B7 FFCA Qai3a 87A $FFCA
3FRE R7 FFCC Q014 8S7A $FFCC
3FR1 39 Qa15a RTS

3FRE R7 FFC& AQ16@ SCRNZ sSTA $FFC6
3FRS B7 FFCa " rd STR $FFC8
3FB8 E7 FFCR agiaa STA $FFCEB
3FEER RB7 FFCC aa19e 8TA $FFCC
3FBE 39 agzee RTS

3FEBF RB7 FFC7 dAE1@ SCRN3 8TA $FFC7
3FCz ER7 FFC8 aRzze 8STA $FFCA

m,},w you can make the seven messages flicker and flash in a per second.
fower P variety of ways.
\f:f :::: # BASIC can perform roughly 68
SRz | 5 BadA Here’s a recap: Seven 512-byte screens are created in the POKEs per second. How wmuch
USRS | FBHUA memory below the BASIC program, allocated by faster is the machine language
UU:':: ::::’: PCLEAR4. These screens are displayed by machine- equivalent of S5TA extended?
SR | B9, language subroutines that switch the video display .
UeR7 | 3444 registers in the SAM. I hope this hybrid BASIC / machine- 179,008 divided by 68, or about
3::3 :::: language program gives you some ideas for effective but 2,632 times faster.
simple program displays.
LerusRg= .) * What is the standard symbol
76295 As for the knowledge gap, the technique for creating short for hexadecimal?
ﬁ*‘a rre machine-language programs and POKEing them into
S (IEXBEETYS = memory via BASIC is something you can use often. Write The dollar sign (),
? :::: :Z‘;‘; the program, either byte-by-byte or using an editor/
XTI assembler. Take the hexadecimal opcodes and operands in * What is the BASIC symbol for
USR. § | $BU4A the order they will appear in memory, and put the values hexadecisal ?
i:? i:ﬁ: into a bunch of BASIC DATA statements. Read each
UL 8 | SPAdA value, convert it to a number BASIC can use, and POKE it The symbol ampsersand plus the
USE 7 | SBHYA into memory. By using the DEFUSR command, define letter B (2H).
where your program will begin execution. From that point
DEFUSR. 2= on, it only takes a USR command to execute your machine- # What comsand is used for a
16306 language program. Review the program you’ve just run BASIC machine language entry
USES | 551 4A until you understand how that’s done. point?
CIXREETN P
OSRZ : HFBRZ | 3 . .
A ee s whaqA N Before I leave this program, please load the mnemonic USR.
Use-t | $BH4A source code that follows.
Z’Z’Zi Zﬁﬁ_ﬁ_ % BASIC needs to know the
8::; ::::: Program #17, an EDTASM+ program. Insert the EDTASM + starting point of a .adm?
TR cartridge, and turn on the power to your computer. When the language program. How does it

get it?
With the DEFUSR command.

+ What
mean?

does DEFUSR3=RH3FBF

It weans that the entry point
{execution address) for USR
routine number 3 is at location
$3FBF.

Write a statement that informs
BASIC that machire language
progras #7 begins at $3FF3.

DEFUSR7=4H3FF 3.

Learning the 6809 91

Hand assembly

What is BASIC's representation
of hexadecimal?

fmpersand plus H {3H),

If variable C$ is A9, write a
statement to make C equal to the
hexadecimal value of C§.

€ = VAL("EH DY)

What is hand assesbly?
Figuring the hex (binary) code
byte by byte from the snemonic
{source) code.

«% Hand assemble STR $FFC7 into
hex, and then binary, code.

STA $FFC7 becowes $B7 FF C7,
which becowes 18118111 1111111}
11008111,

* What addressing sode is this?
Extended addressing.

* How many bits represent an
address?

16 bits.

* How many hexadecimal

characters is this?

4 hex characters.

How many bits represent the
memory contents at an address
{the data)?

8 bits.

How many hex characters is
this?

2 hex characters.

% bhat is the value BO2IOBIQ in
hexadecimal?

$i2

+ What are the ASCII values for
1 and ®2*?

$31 and $32.

92 Lesson 10

3FCS B7 FFCER aaz3@ 8TR $FFCE
3FC8 R7 FFCC _AZ4@ 87TA $FFCC
3FCER 39 razsa RTS
3FCC B7 FFC& 2az6@ SCRN4 57TA $FFCE
3FCF R7 FFC9 eaz7a STR $FFC3
3FD2 B7 FFCE agpzaa sTA $FFCH
3FDS R7 FFCC aRz3a STA $FFCC
3FD8 39 Qa3ea RTS
3FD9 ER7 FFC7 Q@312 SCRNS 85TA $FFC7
3FDC R7 FFC3 xa3ze STR $FFC3
3FDF B7 FFCE Qb330 STR $FFCR
3FEZ R7 FFCC DA340 STA $FFCC
SFES 39 Qa3Sa RTS
3FE6 B7 FFC6 @@36@ SCRNE 8STR $FFC6
3FE9 B7 FFCa @az7e STA $FFCa
3FEC B7 FFCA aa3sa STR $FFCA
3FEF B7 FFCD aazse sSTA $FFCD
3FF2 39 Q4R RTS
3FF3 B7 FFE7 @a41@ SCRN7 sSTA $FFC7
3FF& B7 FFC8 a4z STA $FFC8
3FF3 RB7 FFCA @a43@ STA $FFCR
3FFC R7 FFCD QA4 42 sSTA $FFCD
3FFF 39 QA4S RTS

Qeaa Qaa462 END
Q2@ TOTAL ERRORS
SCRN1 3FAS
SCRNZ 3FRZ
SCRN3 3FBF
SCRN4 3FCC
SCRNS 3FD3
SCRN6& 3FE6
SCRN7 3FF3

Type A/NO and hit <ENTER>. Lines of information
scroll by. The incredible thing about this mnemonic source
code — and most mnemonic source code — is that it looks
so massive. Here are 36 lines of typing, 7 labels, 8 columns
wide, practically filling a page. And yet all this resolves into
amere 91 bytes of actual program, little more than a third of
what a BASIC program line can hold.

Since I knew precisely what I wanted, and since this
program was so short and consistent, I actually figured out
the hex code byte by byte using the MC6803E data
booklet. Later I typed this source code for you. But in doing
the hand programming, I had to keep track of where each
subroutine began. The nice part about an editor/assembler
is that whatever you have in mind can be typed and
examined easily, even if it seems long. The editor/
assembler picks up typing errors, whereas hand
assembling each byte can be a highly error-prone
procedure. Plus, by liberally scattering labels in the code,
critical addresses can be identified; in fact, the assembler
provides a complete display of all labels at the end of the
assembled listing. Which teaches you more? My vote is for
hand assembly. I'll help you with some of that.

For hand assembly you’ll need paper and pencil, plus your
MC6809E data booklet open to pages 30 and 31. The
problem will turn away from flashy video displays for
awhile; here it is:

(iiven an address transferred from a BASIC program,
create a display which will present eight lines of
information. The first line will contain the address and
eight hexadecimal bytes of memory contents separated by
spaces. If the address is $2000, for example, the display

™

DEFUSR D=
— 162(F

USR ¥

SBHHA

SR |

HIFAS

UsSR2

b 2FBZ

SR 3

$ BFBF

1 Usk <

& BYYA

USR §”

$BUHA

USR.G

SB4HA

USR T

$BHHA

USR8

€ BH4A

USR.?

S BYYA

PEFUSR. =
e o532

e &

$844A

Useed

S AT

USSR Z

$3FpZ

LDSRD

B3FBF

LSRR

b3RL

27 n\ﬁ

Xz

OSRS

PBHGA

LSRG

BBAYA

USR7

BBHYA

USR8

BHYA

USRG

$8444

DEFUSR 5=
— /6345

VSR ¢

$B4HA

USR.|

B3rAS

UsrR 2

$3Fp2

| OsR3

$ SFEF

USRY

$SFCL

USRS

$3f09

N

SR6

$B44A

OsR7

$ BY4A

usks

B44A

OsRy

EBUAA

DEFUSR b=

358

use@

$BY4A

LSkt

$3FAS

USRZ

$2r82

USR3

5 LFOF

VSR

$IFCC

3 USRS

$3F07

USRbe

BIFEL

TR

WiReT

$ B4

USRS

$BY4A

USRY

58444

PEFUSR 7=
1637/
USRE | HRHYA
USRA | $3FAS
USe2 | &3z
SRS | $DERF

OsRY | $3FCC
L wes | 32¢be

R | $3FEL
USR7 | $3FF3
Uses | SBYA
(529 | $649A

Fot

$BH4A 77
EXEC. &R BYYHA

A /5 %
~ 7 FC ERROR %

7y uk\mp\“\'\f \I‘§
RV

should print $2000 followed by the data found in memory
locations $2000, $2001, $2002, etc., up to $2007. In the
next line, the address $2008 would be displayed, together
with the memory data found at $2008 through $200F. And
on down for a total of eight lines. Ready?

2000 ¥ FF 2¢ 13 42 65 AA AA Ol
2008 X% (2 93 4/ 40 87 Az BL B
2010 ¥ 95 00 OO 00 GO 00 0O 0O

!

AVDREZS & BYTES
CF DATA

Know how to tell if you're ready? Think about Session 8,
where I presented a dozen machine language instructions
and showed how they worked, including how flags were
affected. If that’s not clear and reasonably fresh in your
mind, review it now. When those instructions make sense to
you, you're ready to move on.

The problem at hand is to transfer an integer from BASIC
which represents an address in memory you'd like to
examine. That examination will display 8 lines, each line
containing one address and 8 consecutive bytes of memory
data. In all, 64 bytes of data will be displayed. First,
conceptualize the problem. Information in integer form is
to be transferred to the machine-language program. That
part is easy; the USR function is used, with the target
address being the operand in parentheses. You've already
used the integer-conversion routine from the BASIC ROM
in order to retrieve a value from BASIC for your machine-
language program’s use, so that’s easy.

Once you've got the integer value in your own program, two
things need to be done. First, it has to be treated as
displayable information. The address must be converted to
four ASCII characters for presentation as a hexadecimal
display. Second, the integer has to be treated as the
address itself in crder to retrieve the memory information
for display.

How about an integer-to-ASCII conversion routine, then?
You'll want to break it down intc simple modules, if
possible. Start by looking for modularity, small consistent
units that you can program. What you know you have are 16
binary digits which you want to represent on the screen as
four ASCII characters in hexadecimal notation. There’s a
clue there. 16 binary digits. Four ASCII characters. You
already know that a single hexadecimal number represents
four binary digits. The solution lies in that knowledge: treat
each four-bit group as an identical task. A single
subroutine.

integer to ASCII

* What is the value of 110@1i81
in hexadecimal?

$CD

What are the ASCII values for
lc‘ m lnl?

$43 and $44,

*# What is the value 10891110 in
hexadecimal?

$8E

What are the ASCII values for
*8" and "E"?

$38 and $45.

* fin address is $ABD7. What are
the four ASCII values (R, 8, D
and 7)?

$41, 430, $44 and ¢37.

* What is the ASCII value for a
space?

$28,

To display the address $ARD7,
a space, and the contents of
$ABD7 (which is $B8E), what ASCI]
values must be used?

$41 30 44 37 28 3B 45

+ Where are these ASCI] values
placed?

In display mewory.

¥ Where is display mewory on the
norwmal Color Computer?

From $3400 to $OSFF,

*+ How many bytes is the value
$8E?

One byte, BE.
* How many bytes are the ASCII
values needed to represent the

value $BE?

Two bytes, $38 and $43,

Learning the 6809 93

Entry and exit

* How many bytes is the address
$ARD7?

Two bytes, $78 and $D7.

% How many bytes ave the ASCII
values needed to represent the
value $A8D7?

Four bytes, $41, ¢38, $44 and
$37.

What are the ABCI] values for
the characters "8° through *9"?

$38 through $39.

* What are the ASCII values for
the characters "A" through *F*?

$41 through $46.

¥hat is the numsber $8E in
binary?

$8E in binary is 1008 i110.

In the nusber $8E, which bits
represent the nusber 87

The leftmwost four bits.

In the nusber $BE, which bits
represent the nusber E7?

The righteost four bits.

fhat are the lefimost and
rightmost four bits of $8E?

1008 and 1118

Wnat are the binary values for
8 and E?

0002 1008 and 0000 1110,

¥ What are the birary values for
ASCIT "8" and ABCII “E"?

9811 1008 and 2108 dig1.

% What is the difference between
binary 8 and ASCII *8"?

Binary 8 is G008 1888 and ASCII

"8" is 9811 10083 the difference
is 0811 0088, or $38.

94 Lesson 10

That line of thinking brings you one step closer to a
modular approach. Each time you have four bits in hand,
you can call the subroutine that creates an ASCII character
from them. Now you need only sketch out that subroutine.
Recall a few sessions ago how, in order to access a table of
encrypted codes, a constant value had to be subtracted
from the ASCII characters to obtain numbers starting from
zero. In this case, you have a complementary situation. You
have four binary digits equivalent to the hexadecimal
numbers O through F. In order to produce ASCII
characters, then, it’s necessary to add a constant value. To
display the number zero as the character 0 with the ASCII
value of hex $30, you would add hex $30. To display the
number one as the character 1 with the ASCII value $31,
again you would add $30. You would do that right up
through number nine which is displayed as the character 9,
ASCII value $39. The constant you add is $30.

So far so good. But when you get to number A, you're in a
little trouble. Binary 1010 is number A, Character A is
ASCII value hex $41. The constant you must add to
number A to get character A is hex $37. It’s consistent from
A through F — add $37 to the value and you get the ASCII
character.

How do you reconcile the two different constants? The
answer is simple: you dorn’t. You find out whether the value
is O through 9 or A through F, and add the constant $30 or
$37 accordingly.

That looks like enough information for a subroutine. The
“entry condition”, as it’s called, is a group of four binary
digits. That four-bit number is checked to see whether it is
greater or less than 9. If it’s greater than 9, you add the
constant $37; if it’s 9 or less, you add the constant $30. The
result is an ASCH character which, when displayed,
represents the hexadecimal numerical value. The ASCII
character is the subroutine’s “exit condition”. The nice
part about a subroutine like this is its versatility — not only
can it be used to display the digits of an address, it’s just as
good for displaying the bytes of memory data.

Mnemonically speaking, that would operate like this. The
A Accumulator enters with the four-bit number. It's
compared immediate with $0A. If the number is greater
than nine, the carry/borrow flag would not be set. The
program would Branch on Carry Clear to an instruction to
add $37 and then return from subroutine; otherwise it
would add $30 and return from subroutine. The A
Accumulator enters with the number and exits with the
ASCII character. Pretty slick.

It would look like this, assuming the A Accumulator holds

the four-bit number:
CONVRT CMPA #30A

BCC LETTER
ADDA #$3p
RTS

LETTER ADDA #4337
RTS

z) 2
[7Iel Iel/ 717 18lal 7 7 [7 Jolol7 oij
2

A B 7

106

CMP #$gA
(po-pa<op)
(set carry)
~BCoETRA—

ADDA #$30
$Ppetsad=$3¢

ASCil

P HSPA
(Be-pazed)
(clear carry)

$3C=
oCtii|o0n

ANP 000011t

0000160
“$gc

Now there’s the task of breaking the 16-bit address into
four 4-bit groups. Half of that's done already, since the 16-
bit address is split into two 8-bit bytes. Creating this
subroutine from there demands just a little convoluted
thinking.

You have 8 bits. You only want to use four bits at a time, and
these four bits have to be in the least-significant positions.
In other words; if the number is $3C, you want to convert
the four bits 0011 into a 3, and the four bits 1100 into a C.
The least-signficant four bits of the byte are just about
ready to use. All that remainsis to temporarily get rid of the
most-significant four bits. The term is “mask” the bits,
meaning create a mask so that only the bits you need show
through.

The mask here is AND. Recall how the AND instruction
works. Both conditions must be a one for the result to be a
one. To mask out the four leftmost bits of the byte, then,
you would AND each of those four bits with zero. To mask
IN the four rightmost bits you would AND each of those
four bits to one. I'll repeat that a different way. If the
leftmost four bits are ANDed with zero, no matter what
those bits are, the result of the ANDing will be zero. If the
rightmost four bits and ANDed with one, no matter what
those bits are, they will effectively remain the same.

Scratch it out on paper and look at it. Use the example $3C
that I just mentioned. Write down the binary equivalent:
0011 1100. Underneath it, write down the mask: 0000
1111. Now use the AND function:

6 AND @ is §
B AND § is B
1 AND § is P
1 AND @ is B

That’s the leftmost four bits. Now the rightmost:

lis 1
1is1
1is @
#AND 1 is @

There are the rightmost four bits. The mask to use here is
$OF. To recap: to retrieve the least-signficant four bits of a
byte, use the mask $OF.

You can pause here to review that section if you like.

The next task is to retrieve the leftmost four bits. If logic
holds, then you can again use a mask. Since the bits you
want are to the left, then the mask 1111 0000 should
suffice. That’s $F0; it will result in the four leftmost bits
being masked in, and the four rightmost bits being masked
out.

There’s a problem, though. Although it masks in the bits
you want, they’re not in the correct place. Youneed themon
the right side of the byte to represent the 4-bit numbers $0
through $F. You have to get those bits from left to right.

Masking

What is the difference between
binary E and ASCII “E*?

Binary E is 0008 1118 and ASCII
*E" is 108 8181 the difference
is 0100 0003, or $37.

#What is the constant
difference between binary values
@ through 9 and ASCII values "@"
through *9*?

The constant difference is $38.

* What is the constant
difference between binary values
A through F and ASCII values "R"
through *F®?

The constant difference is $37.

* What logical function states:
both of two conditions wust be
true for the result to be true?

The AND function.

% How are the rightmost four
bits retrieved from the mumber
$8E (1089 111€)?

By masking the leftmost four
hits.

What mask is used?
AND 00BB1111.

#If A contains BE, what
memonic command is used to
retrieve the rightmost four
bits?

ANDA & (AN A accusulator
ismediate with &, Dbinery
Smiiin.,

+ fhat constant is added to $6E

to produce the ASCI] character
IEI?

‘37.

Learning the 6809 95

Logical Shift

+ How are the leftmost four bits
retrieved from the number $8E
(1008 1118)7

By shifting the bits right four
times,

#phen $8E is shifted right
once, what is the result (in hex
and binary)?

8108 8111 (%47),

* When $BE is shifted ripght
twice, three times, and four
times, what are the results (in
hex and binary)?

Qdig M1l ($23), OGR! oBRl ($1D)
and 0000 1908 (488},

What comstant is added to $88

to produce the ASCII character
a?

£30.

+ What is necessary to convert
the least significant half of a
byte to a 4-bit number?

Masking with $@F.

- # What is necessary to convert
the wost significant half of a
byte to a 4-bit number?

Rotating right four times.

+ What is necessary to convert a
4-bit binary nusber to a
hexaderisal ASCII character?

The addition of a constant.

96 Lesson 10

Recall the various rotate and shift commands from an
earlier session. You'll need to refer to your MC6809E data
sheet to choose the particular rotate or shift you want; open
to pages 30 and 31.

You know that you need to move these bits to the right.
Your choices are ASR (arithmetic shift right), LSR (logical
shift right), and ROR (rotate right). Look at each one. ASR
reproduces the leftmost bit each time you shift, so this
doesn’t look very good. If you shifted first and masked
second, it would work. How about LSR? It shifts right and
brings zeros in from the left as it shifts. That one looks
good. Finally, ROR swings the bits 'round from the other
side of the byte, so you would need to mask the results
afterward.

The logical shift right (LSR) looks the best. In fact, it looks
excellent. Since the bits shifted out the right side end up in
the bit bucket, and zeros come in from the left, you don’t
even have to bother masking this before you use it. The
process of shifting it right gives you not only the four bits
you need, but eliminates those you don’t want.

Here’s a summary of these two program segments: the byte
is to be displayed as two hexadecimal ASCII characters.
The leftmost four bits are obtained by logically shifting the
byte right four times. The rightmost four bits are obtained
by masking the original hyte with $0F. All that remainsis to
make sure the original value is saved before modifying it.
Push A Accumulator will take care of saving the byte, and
Pull A Accumulator will get it back when it’s needed. In
terms of mnemonics, and assuming the value to be
displayed is in the A Accumulator, the complete routine
would look like this:

BYTBIT PSHS A Push A Accumulator onto stack

LSRA Logical Shift Right A Accumulator
LSRA Logical Shitt Right A Accumulator
L.SRA Logical Shitt Right A Accumulator
LSRA Logical Shift Right A Accumulator

JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine
PULS A Pull A Accumulator from stack

ANDA H30F AND A Accumulator immediate with $@F
JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine

At this point, two major portions of the problem have been
solved: the 8-bit byte has been converted to two 4-bit
numbers, and those 4-bit numbers have been converted to
ASCII characters. The screen display routine has yet to be
done. I'll leave you with these considerations: your program
has to know where to start the screen display in memory,
that is, it has to be initialized. The current screen display
position has to be updated so that the next character
displayed will appear in the next available position.

Review this lesson, and consider those problems for next
time.

$3c=[olofs[s]/]7]0]0]
S BOENARAE
LSR
e

‘M./y/
LSRDP;!”:LO]OI o /]/]s

O <R BH <R

et
wpﬁ}!ﬁo{o[o}o]/[/l/]

Epda

~

]

g
LSRB%‘;! o[o[o dfol /]

&<

Qo0 OO0/ =

END

The topicis hand assembly. Last time I started you working
on a program to display memory locations and their
contents. At the end of the session, you had produced two
pieces of that program: the byte-to-nybble conversion
routine (a nybble is four bits), and the hexadecimal-to-
ASCII conversion routine. The byte-to-nybble conversion
was made up of two steps. To move the most-significant
nybble into the righthand portion of the byte, the byte was
logically shifted right four times. To obtain the least-
significant nybble, amask of $0F was ANDed with the value
of the byte.

The problem I posed at the end of the session was this one:
create a single-character display subroutine that, when
called, places a character in the correct location on the
screen and updates the program to point to the next
available screen location.

To help solve this, I hope you thought back to the message-
display program you created in the third session. There
wasn’t much to that display routine, and there isn’t muchto
this one either. At the beginning of this program, then, you
would initialize the first screen location, perhaps in the Y
register. Each Color Computer screen line is 32 characters
long — that’s hex $20. So to start on the fourth line of the
screen, you would load the Y register with the immediate
value of $0480 at the start of the program:

LDY #3p48p

is the mnemonic. If the ASCII value to be displayed is the A
Accumulator, and the Y register points to the current
location on the screen, then you would store the- A
Accumulator in memory — display memory, that is —
indexed by Y. To update that location, choose the auto-
increment/decrement zero-offset indexed mode. You
remember that mouthful. That’s Store A Accumulator at
memory indexed simply by Y, auto-increment Y by one,
and then return from subroutine. Label it DISPLY:

DISPLY STA Y+

assembly really hasn't
soten underway yet. At this
pointy the program is still
being structured and converted
into mmemonic source code. So
fary a complete byte-to-ASCII
conversion systes has been
developed., What's to come is a
display routine, plus a kind of
executive structure.

*# What is the location of the
normal disolay screen on the
Color Cosputer?

30408 to $O5FF,

* Each line of the display is 32
characters lona. What lire
starts at 7

If 8488 is the start of the
first line, then $8488 is the
start of the fifth line.

* If the ¥ register points to
screen location $OAB8 and the A
register contains the ASCII
value, what snemonic instruction
would place the ASCI! value on
the screen?

STR .Y

+ What memonic instruction
would place the ASCI1 value on
the screem, and autosatically
move the ¥ pointer register to
the next screen position?

STA WY+

* Write two instructions that,
given the conditions just used,
create a complete ASCII display
and screen update routine.

STA ,v+
RTS

RTS
Learning the 6809 97

A mnemonic program

* What does STA Y+ mean?

Store A accumulator to memory
indexed by the Y register, with
no offset, and automatically
incresent V.

+ Biven that R contains $20 and
B contains 628, what do the
following four instructions do?
STE v+
STR Y+
578 'Y+
STB .Y+

The four insiructions display
spacey stary stary space.

% What does JSR $B3ED identify
on the Color Computer?

fn integer conversion subroutine
in the BASIC ROM.

What are the results of J5R
$B3ED?

A 16-bit signed integer is found
in the D register,

*+ What does integer msean?

A number without a fractional
{or decisal) part; a whole
nusber.

+ What integer"

mean?

It wmeans the nusber is positive
or negative.

How is the sign indicated?

By the leftmost bit; 8 is
positive, 1 is negative.

does “signed

In the display programs how is
the sign information used?

it isn't. The number is treated
as a3 16-bit unsigned integer.

#In the Program, the
instruction STA (50881 appears.
What addressing mode is this?
Direct addressing.

#In the PrograN the
instruction LDA #%2R appears.
What addressing mode is this?
Immediate addressing.

+In the Progray the
instruction JSR $B3ED appears.
What addressing sode is this?
Extended addressing.

#In the PrrOgra, the
instraction BNE LLODP appears.
What does BNE LLODP mean?

1t means Branch Not Equal to the

instruction labeled in the
source listing "LLDOP".
98 Lesson 11

That should do the trick. A short, sweet 3-byte subroutine
that illustrates the power of the 6809 processor.

That seems to cover the necessary subroutines —
conversion and display. What's left to create is a kind of
executive program which accepts the address from BASIC,
searches for the memory data, and calls the subroutines
you’ve just created. This executive’s job would be to call for
the value from BASIC, initialize the screen parameters, do
the screen line and screen character counting, call the
convert and display subroutines, and return to BASIC
when all is done.

The sequence as I see it comes out to 15 steps:

1.
2.
3.

Get the target address from BASIC
Initialize the screen starting position
Initialize the line and character counts — 8

lines, memory bytes per line

4.

Convert and display the most-significant

byte of the memory address

5.

Convert and display the least-significant

byte of the memory address

6.
7.

8.
9.

10.
11.
12.
13.

Display a space as a separator
Display two stars or other separators
Display another space as another separator
Get the memory contents of the address
Convert and display that memory byte
Display another space as a divider
Increment the target address
Loop for 7 more memory bytes, for a total

of 8

14.

Loop for 7 more lines of address, for a

total of 8

15

. And finally, return to BASIC

I've prepared a program that follows these steps; open to
your documentation and follow along. The program is in
mnemonics, which you will be hand-assembling. I'll explain
each line briefly; those which you haven’t already written
should fall into place.

LLOOP

JSR $B3ED BASIC INTEGER-CONVERT ROUTINE
LDY #3p480 FIRST SCREEN LOCATION TO USE
TFR DX GIVE INT-CONV RESULT TO X REG
LDA #8 PUT 8 LINES INTO ACCUMULATOR
STA <pppl LINE COUNT INTO DIR. PAGE Bl
LDA #8 PUT 8 BYTES INTO ACCUMULATOR
STA <pogs BYTE COUNT INTO DIR. PAGE fp
TFR X.D INT-CONV RESULT BACK TO D REG
JSR BYTBIT BYTE-TQ-ASCII CONV. & DISPLAY
TFR B,A MOST SIGN. BYTE INTO A ACCUM.
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
LDA #$2A PUT ASCII FOR "*" INTO A ACC.
LbB #$20 ASCII FOR SPACE INTO B ACCUM.
STB Y+ DISPLAY SPACE, GET NEXT POSN.
STA Y DISPLAY STAR, GET NEXT POSN.
STA Y DISPLAY STAR, GET NEXT POSN.
STB Y+ DISPLAY SPACE, GET NEXT POSN.

BYTE- To-NYBBLE.

ROUTINE(BYTSIT)

BLOOP LDA K+ GET MEMORY CONTENTS X- INDEXED
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
ST8 Y+ DISPLAY SPACE, GET NEXT POSN.
DEC <popl DECREMENT NUMBER OF BYTES
BNE BLOOP REPEAT UNTIL ALL 8 DISPLAYED
DEC <ppap DEC. NUMBER OF DISPLAY LINES
BNE LLOOP REPEAT UNTIL ALL 8 DISPLAYED
RTS BACK TO BASIC WHEN ALL DONE .

SAVE BYTE STORED IN A ACCUM.

LSRA SHIFT TO RIGHT ONE BIT

LSRA ... AND SHIFT ONE MORE
LSRA ... AND SHIFT ONE MORE
LSRA ... TIL 4 BITS ARE AT RIGHT
JSR CONVRT NYBBLE-TO-ASCII CONVERSION
JSR DISPLY DISPLAY ASCII CHAR. & UPDATE
PULS A RECOVER ORIGINAL BYTE STORED

ANDA #3pF MASK IN RIGHT-HAND NYBBLE
JSR CONVRT NYBBLE-T0-ASCII CONVERSION
JSR DISPLY DISPLAY ASCII CHAR. & UPDATE
RTS TWO CHARS. CONV'D & DIPLAYED

CONVRT CMPA #3PA COMPARE NYBBLE AGAINST $pA

BCC LETTER IF CARRY CLEAR, A ACC. >= $@A
ADDA #83p ELSE IS A NUMBER, SO ADD $39
RTS CONVERSION COMPLETE; RETURN

LETTER ADDA #8$37 IT IS A LETTER, SO ADD $37
RTS CONVERSION COMPLETE; RETURN

DISPLAY ASCII, UPDATE SCREEN
RTS DIPLAYED & UPDATED; RETURN

Now comes the time-consuming part. I want you to
translate each one of these mnemonics into the binary
opcodes and operands the computer will need to execute
the program. I'm confident this program works — there are
some anomalies, but you'll discover them soon enough —
so open your MC6809E data booklet to pages 30 through
33.

Assume that the program will be stored in memory
beginning at $3F00. Since some of you have 16K machines
whose uppermost RAM address is $3FFF, this gives you
256 bytes of room for the program. I can tell you now that
this program will occupy less than 100 bytes, and with some
experience you'll be able to scope out program lengths like
this one. One other assumption to make is the address of
the Direct Page, which is $00; that information is provided
inyour EDTASM+ manual, in the memory map appendix,
which also informs you that direct page addresses $00
through $7F are free for your use.

For the hand assembly, you'll need several sheets of lined
notebook paper, with the addresses $3F00 through $3F60
in a column down the left side. This is a good time to take a
break for a review, and also to get the paper ready.

Translating mnemonics
What addressing mode is BNE
LL00P?

Relative addressing.

+1In the Programy the
instruction 5TB .Y+ appears.
What addressing mode is this?

Indexed addressing
{specifically, zero-of feet
indexed).

* In the Program, the

instruction LSRA appears. What
addressing mode is this?

Inherent addressing.

* What is hand asseshly?
Figuring the hex (birary) code
byte by byte from the smemonic
{source) code.

* The following inherent
instrections appear in the
progran. Hand assewble each:

Hand assemble LSRA.

$44

Hand assesble RTS.

$39

* The following immediate
instructions appear in the
progras. Hand assemble each
one:

* Hand assemble LDY #$8488.

$1@ 8E & 80

Hand assesble LDA #5088,

$86 88

+ Hand assemble LDB #$20,

$C6 28

* Hand assemble ANDR #$6F,

$84 OF

+ Hand assemble ADDA #%530.

488 38

*# The direct instruction 57TR
{60831 appears in the program.
Hand assemble it.

$97 &1

* The following register
instructions appear in the
progras, Hand assemble each
one:

+ Hand assesble TFR DyX.

$iF @1

Learning the 6809 99

JSR, LDY, TFR, LDA, STA

Hand assemble TFR ByA.

$iF 98

Hand assemble PSHS A.

$34 82

Hand assesble PULS A.

X<

& The following indexed
instructions appear in the
progras, Hand assemble each
one:

+ Hand assemble STB Y+

$E7 M@

+ Hand ascemble STR , ¥+

$A7 AR

+ Hand assemble LDA X+

$A6 88

¥ The following immediate
instructions do not appear in
the program. Hand assemble each
ml

+ Hard assemble RDDD #$C303

$C3 L3 €3

Hand assemble ANDCC #$AF
$1C F

* Hand assemble CMPX #$@5FF
$8C @5 FF

* Hand assesble CMPR $4FF
$81 FF

Hand ascemble EDRA #%20
$88 20

Hand assewble LDD $$BBAA
$CC BB AR

Hand assemble ORB #$AC
$CA AC

% Hand assemble SUBR #$82

$58 @2

+ The following extended
instructions do not appear in
the program. Hand assesble each
one.

+ Hand assewble ADDA $1683

$BB 1@ 08

100 Lesson 11

You should have your notebook paper ready, and your
MC6809E data booklet open to page 30.

Start with the first instruction, JSR $B3ED. Find JSR on
page 30. This is an extended addressing mode; the opcode
you should find is $BD. On your paper, next to address
$3F00, write $BD. At address $3F01, write the first byte of
the operand, which is $B3. At address $3F02, write the
second byte, $ED. You have hand-assembled the first
instruction, JSR $B3ED, into three binary bytes,
$BD B3 ED.

Your pencil should be poised above address $3F03, ready
to assemble the instruction LDY immediate #$0480. Find
mnemonic LD on page 30, and follow in the second column
until you find LDY. This is one of a limited number of two-
byte opcodes, and its hex representation is $10 8E. The
6809 is a newcomer, based on the 6800 microprocessor.
Opcodes like LDY are additions to the original 6800
instructions; where there’s no room to fit an opcode in the
binary instruction set, certain bytes are set aside as
doorways into further instructions. The hex codes $10 and
$11 serve that purpose; later on, check page 29 for a list of
these.

Back to the program. The opcode for LDY, then, is $10 8E.
So across from address $3F03, write $10, and across from
address $3F04, write $8E. Since this is an immediate
instruction, the next two bytes are the operand. Next to
addresses $3F05 and $3F08, write the bytes $04 and $80,
respectively. You have now assembled the second program
command.

Those two were easy. The next instruction is TFR D,X
(transfer D to X), which you can find on page 31. You'll find
this in the immediate column, although that’s stretching
the point. The opcode is $1F, so write that next to address
$3F07. The operand is D,X. Turn to page 34, where you’ll
find a block labeled “Transfer/Exchange Post Byte”. This
byte is divided into two four-bit blocks, that is, into two
nybbles. The left-hand nybble is the source register, and
the right-hand nybble is the destination register. The
binary information below names the registers. Your
program is transferring D to X. The source registeris D, the
destination register is X. Checking the table, you find that
D is value 0000 and X is value 0001. The combined byte is
therefore 0000 0001, or hex $01. Across from memory
location $3F08, write $01. The opcode and operand for
TFR D,X assemble to $1F 01.

Next. LDA immediate with 8. Back on page 30, under the
LD instruction, you can find LDA. Since this is an
immediate instruction, the opcode is $86. Next to address
$3F09, write $86. The instruction is immediate, so the data
is 8. Write $08 across from address $3F0A. Things are
moving now.

The instruction is STA Direct Page <0001. STA is found
on page 31 under the instruction ST. This is a direct

MPRESS DATA
3Foz _EDJ" %‘;}

Sree e S
seol B> (
| 2eoz ED >

SFO3 1O -

3FCH BE LioY 2
FOS O4 J#HOHED i

[sFae 807 o
=
LS
R Y
ADDRESS DATA <2
LFCO BD R)
3FC | 8%
BEeZ Ep
EET:)
3F04 BE
3FOS o% B

BFQ | B3
" sf0z " ER
3F0 > 10
_3fo4# _BE
3FO5 o4
3FOL 8o
|_2€07 1F
2FCH ol

(\/\/VV—‘————-._.

| 2F09 g6 S
2FCA B8

[3Fc® 97 1 s
3FocC CYMISLC S

addressing mode, so the operand under the direct heading
is $97. Write $97 across from address $3FOB. In a direct
instruction, the page is known, so only the least-significant
byte is used as the operand. The address is $0001 on page
$00, so the least-significant byte is $01. That’s the
operand; write $01 next to address $3FOC.

The next two instructions are virtually identical. LDA
immediate 8 is again $86 08. Write $86 next to $3FOD, and
$08 next to $3FOE. STA Direct Page <0000 is also very
similar, assembling to $97 00. Write $97 next to $3FOF,
and write $00 next to $3F10. The only thing to keep in mind
is the label LLOOP, an abbreviation for Line Loop. Your
program needs to come back to that address $3F0D each
time it has to display a new line, so mark that label down on
the bottom of the last page of your papers: write LLOOP,
and across from it write the address $3F0D.

You're only 16 bytes into the program. I've already told you
it will run nearly 100 bytes, so you’re probably beginning to
conclude that this assembly language stuff isn’t for you.
Hang on! The editor/assembler will do this all for you in
seconds, but I'm convinced it won’t do you any good to
assemble everything by machine. There are two
advantages to hand assembly: first, by the time you've hand
assembled a program, you know it intimately. Second, if
you're ever in a bind and need a quick diagnostic program,
POKEing values into place may be the only solution. You
have to be able to assemble a program from the data
bocklet, or you're wasting your time learning about this
powerful 6809 processor.

Back to work. Transfer X to D — TFR X,D. The opcode
you've used. Next to address $3F11 write $1F, the transfer
opcode. This time the source register is X and the
destination register is D. If you’'ve forgotten, turn to page
34. X register is binary 0001, D register is binary 0000. The
composite byte made from these two nybbles is 0001 0000,
or hexadecimal $10. That’s the operand. Next to address
$3F12, write $10.

The next instruction is JSR BYTBIT. You've used the
opcode for Jump to Subroutine (JSR) — that’s $BD. Write
$BD next to address $3F13. But how do you deal with the
operand? You know it’s an extended operand, which means
it's two bytes. The subroutine BYTBIT is within the
program you're writing, but you don’t know its address yet.
What you do now is leave two blank spaces at addresses
$3F14 and $3F15. You'll fill them in later when you know
what they are. There are two pass-throughs to any
assembly process, and this is the first pass.

The next free address is $3F16. The command is transfer,
$1F. Write that next to $3F16. The transfer is from B to A.
Again, turn to page 34. The source register is B, binary
nybble 1001; the destination register is A, binary nybble
1000. The combined byte is 1001 1000, or hex $98. Next to
address $3F17, write $98.

Direct page

% Hand assemble CMPB $FFFF
$F1 FF FF

* Hand assemble EORB $0881
$F8 08 @1

* Hand assesble JMP $B3ED
$7E B3 ED

+ Hand assemble LDX $7FFF
$BE 7F FF

* Hand assesble LDY $7FFF
410 BE 7F FF

* Hand assemble LSR $@10@
$74 01 8

% Hand assewble STD $8DDC
$FD @D DC

& The following inherent

instructions do not appear in
the program. Hand assemble each
one,

Hand assemble ASRA

$47

Hand assesble CLRB

$5F

Hand ascesble COMA

$43

Hand assemble INCB

$5C

% Hand assesble LSLB

5]

* Hand assesble NEGA

$40

* Hand assewble RORA

$46

Hand assemble RTS

$39

& The following register
the mrosmen. Hand ssseabie sath
one,

* Hand assesble PULS M CC, X, Y
$33 35

Learning the 6809 101

STB, Postbytes

+ Hand assesble PSHS
£y By Xy Yo CCy Uy DP, PC
$36 FF

+ Hand assesble TFR DPyB

+#iF B9

* The following indexed
instructions do not appear in
the program. Hand assemble each
one,

+ Hand assesble CWPR .Y

$R1 P4

Hand assemble CMPR Y+

$01 P8

* Hand assemble CMPA 5,V

$A1 25

Hand assemble CWPR $7F,Y

$A1 A8 TF

+ Hand assewble CHPA $1234,Y

01 A9 12 34

What does CMPR , Y+ mean?
Compare A accumulator to mewory
indexed by the Y register, with
no offset, and automatically
incresent Y,

+ What is hand assesbly?
Figuring the hex {(binary) code

byte by byte from the mnemonic
{source) code.

102 Lesson 11

Another JSR to BYTBIT is next. Write the opcode for JSR,
hex $BD, next to address $3F18, and leave blank spaces at
$3F19 and $3F1A. Again, when you find out where the
subroutine BYTBIT is, you'll fill those in.

A LDA immediate is next. That instruction’s been used
before; the opcode is $86, the operand here is animmediate
value, $2A. Write $86 and 2A next to addresses $3F1B and
$3F1C, respectively.

LDB is a similar opcode to LDA. You'll find it right below;
LDB immediate is $C6. Write $C6 next to address $3F1D,
and write its immediate operand, $20, next to address
$3F1E.

On to STB ,Y+. Find the ST instructioon on page 31, and
locate STB in the indexed addressing mode. The opcode is
$E7. Next to address $3F1F, write $E7. In the column
labeled “number of bytes”, it says “2-+”, meaning this
instruction requires a total of 2 or more bytes to complete.
You have to determine how many and what they mean.
Hand-assembling indexed addressing is the *~ickiest, but
zero-offset indexed isn’t bad. That’s what you have here.

Turn to page 33. Find the table entitled “Indexed
Addressing Postbyte Register Bit Assignments”. This one
byte contains a bucketful of information. It identifies the
register, what kind of addressing mode is used with that
register, and whether the addressing is non-indirect or
indirect. I haven’t talked about indirect addressing, so
don’t worry about that yet. In the right-hand column of this
table is a description of each addressing mode; “EA”
means effective address, that is, the address the
instruction will calculate and use. The mode used in this
instruction is auto-increment, zero-offset. That's the
second mode down. The definition of “RR” is shown below
the table. Your instruction uses the Y register, so RR is 01.
Plug 01 into the binary digits shown, and the resulting
number is 10100000. The postbyte for the Y register in
zero-offset indexed, auto-increment mode is hex $AO.
There’s your operand. Next to address $3F20, write $A0.

Between now and the next session, use your MC6809E
data booklet to complete the rest of the program. If the
process is still unclear, review the session up to this point.
Don’t cheat on me, now. When you can do this hand
assembly without your hand held by me, then you're ready
to go on. Talk to you then.

Hello again. I hope you have been successful in your hand
assembly of the remainder of the program. Here's a
summary of what you should have been doing. . .

The next three instructions are easy. STA indexed is $A7.
Write $A7 next to address $3F21. The operand is zero-
offset indexed; auto-increment Y register is the same as
before. Across from address $3F22, write $A0. The
following instruction is the same, $A7 AO. Write $A7 AO
next to $3F23 and $3F24, respectively. Finally, STB ,Y+
comes around again. You know that’s $E7 AO, so write
$E7 AO next to $3F25 and $3F26 in turn,

Since you can use the table on page 33, the next instruction
should strike no fear. It’'s LDA ,X+. Load A indexed, from
page 30, is $A6. Write $A6 next to address $3F27. Now
glance at the chart on page 33. This is still auto-increment
indexed, which is the second line of the table. The register
is X, meaning the value for “RR” is 00. Plug 00 into the
blank, and the binary byte becomes 1000 0000. That’s hex
$80, and that’s your operand. Next to address $3F28, write
$80. And be sure to note the label BLOOP here at address
$3F27. You've got to get back there later.

There’s nothing really new in the rest of the main program,
just tedious hand assembly. The next instruction is a JSR.
That’s hex code $BD. Write $BD next to address $3F29,
and leave the next two addresses blank. Still don’t know
where the subroutine will be.

STB ,Y+ is next, and you can steal that information from
earlier. STB indexed is $E7; write that at address $3F2C.
Auto-increment zero-offset indexed Y is $A0; write that at
address $3F2D.

The decrement instruction is next. Find that on page 30.
This is decrement a direct page memory location you're
dealing with, opcode $0A. Next to $3F2E write $0A. The
location to decrement is $00, so that’s your operand. Write
$00 next to address $3F2F.

Hand assesbly is tiresomwe and
troublesome. But it teaches
yous; giving you a level of
intimacy with the machine that
you can't achieve with smewonics
alone. If this kind of detail
bothers you, consider that
understanding someone else's
program -— without recourse to
comented source code -- can
only be achieved by
disassesbling and examining the
binary information. Knowing it
both mays is your key tc
programming versatility.

¥ What is hand assembly?
Figuring the hex (binary) code
byte by byte from the smemonic

{source) code.

*What are the bytes in an
indexed instruction?

The opcode, the postbyte, and
additional bytes of operand if
neEcessary.

* Hand assemble LDR ,)X+

$A6 84

What is LDR X+ in binary?
1010811€ 18000006

Hand assemble LDA $1234, X

$A6 B89 12 34

Learning the 6809 103

Conditional branches

* What indexed addressing mode
is LDA $1234,X?

16-bit comstant-offset indexed.

+ If the label BLODP is found at
address $3F27, hand assesble
this instruction, found at
address $3F38: BNE BLODP

$26 F5
* What addressing mode is this?
Relative addressing.

* Relative atdressing is
relative to what?

The program counter (PC).

%+ In the assembly of BNE BLODP
1826 F5), what does the value
$F5 signify?

fn offset relative to the
oropras counter,

What is the offset in binary?
In binary, 11116181

* What is the offset in
decimal?

In decimal, -11.
¥ What makes $F5 negative?

The fact that in $F5 {11110181),
the leftmost bit is a one.

*+ The following exercises are
hand disassembly, that is, the
tranclation from hexadecimal {or
binary) code into mnemonic code.
This is done with unknown
grograws for purposes of
examining the operation of the
progras. Use the chart in the
MCGBAOE data booklet on pages 28
and 29 for help. Disassemble,
describe and give the mmemonic
for each of the following groups
of bytes.

104 Lesson 12

Finally a branch instruction. Branch on Not Equal can be
found on page 32. Find the table at the bottom right labeled
“Simple Conditional Branches”. Under “false”, second
mnemonic down, is BNE. The opcode shown is $26. So
next to address $3F30, write $26. At this point in the
program, the Program Counter is pointing to the next
instruction in line after this one . . . meaning the Program
Counter is pointing to address $3F32. Now locate your
lahel BLOOP. This is where the branch is going. If $3F32 is
relative position 00, count backwards to the address
BLOOP, which is $3F27. FF, FE; FD, FC; FB, FA;
F9, F8, F7;F6, F5.$F5isthe positionof BLOOP relative
to the Program Counter. That makes $F5 your operand for
the relative branch BNE. Next to address $3F31. then,
write $F5.

Decrement direct page you know already. The opcode is
$0A, and should be written next to address $3F32. The
operand for direct page $00, least significant byte $01, is
$01. Next to address $3F33, write $01.

Another relative branch follows. This is BNE again, opcode
$26. Write that down next to address $3F34. Now comes
the counting backwards from the Program Counter, which
is pointing to $3F36. You've got to get all the way back to
LLOOP at address $3F0D. If you subtract it instead of
counting backwards, you'll get the value $D7. I won't put
you through it this time. Just write your relative branch
operand $D7 at address $3F35.

All that remains of the main program now is the return from
subroutine. Find that on page 31 if you need to. It’s opcode
$39. Next to address $3F36, write $39. The main program
is complete. Only the subroutines remain; the subroutine
BYTBIT is coming up next, and its address is $3F37.

The subroutine BYTBIT begins at $3F37, meaning your
three blank operands earlier in the program were filled with
that address. The first action of the subroutine was to push
the A Accumulator on the stack. $34 is the opcode, and
using the push/pull order chart, you found that $02 is the
operand. Four logical shift right A accumulator commands
followed: each of these is $44.

Two more subroutine calls follow, $BD being the opcode for
jump to subroutine. The addresses, which you had to
calculate on your second assembly pass, are respectively
$3F4E and $3F58.

Pull accumulator is $35 02, the operand calculated in the
same manner as for the push command. And A immediate
with $OF is represented $84 OF.

A familiar pair of subroutine calls follows — $BD 3F 4E
and $BD 3F 58 — and the convert and display subroutine
finishes with the return from subroutine, $39.

The short CONVRT subroutine compares A immediate
with $0A — that’s $81 OA. It branches on carry clear (or

BHS ... branch on high or same, meaning greater or equal)
to the label LETTER. You calculated that relative branch
to be $03, giving an instruction of $24 03. Add A
immediate with $30 is $8B 30, and return from subroutine
is again $39.

At the label LETTER, add A immediate with $37 is
$8B 37, followed by RTS, $39.

Finally, the short display and update routine is made up of
STA ,Y+...store A at Y, zero-offset, auto-increment. That
pattern is familiar enough to copy the information from
earlier in the program — $A7 AO. And, at last, the final
return from subroutine, $39.

Your program should run from address $3F00 to $3F5A, a
total of 91 bytes. Look in your documentation, and see if
your hand-assembled hexadecimal code agrees with
mine:

3Fp@ ** BD B3 ED 14 8E @4 88 1F
3Fp8 ** p1 86 P8 97 g1 86 P8 97
3F1p ** p0 1F 18 BD 3F 37 1F 98
3F18 ** BD 3F 37 86 2A C6 20 E7
3F20 ** AD A7 AP A7 AD E7 AP A6
3F28 ** 80 BD 3F 37 E7 AQ DA 99
3F39 ** 26 F5 PA p1 26 D7 39 34
3F38 ** B2 44 44 44 44 BD 3F AL
3F4p ** BD 3F 58 35 @92 84 PF BD
3F48 ** 3F 4E BD 3F 58 39 81 pA
3F50 ** 24 §3 8B 30 39 8B 37 39
3F58 ** A7 Ap 39

Time to get it running. I've got this batch of hexadecimal
code prepared for you as a series of BASIC DATA
statements.

Program #18, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1@ DATA ED, B3, ED, 1@, 8E, 84, 80, 1F
1S DATA @1, 86,08,97, @1, 86, @8, 37
2@ DRTA @@, IF, 1@, RD, 37, 37, 1F, 98
25 DATA BD, 3F, 37, B&, 2R, 06, £@, E7
3@ DATA AB, A7, AR, A7, A2, E7, A0, A6
35 DRTA 8@, ED, 3F,37.E7.0Q, @A, o
4@ DATA 26.F5, 08,81, 86, D7, 39, 34
45 DATR @2, 44, 44, 44, 44, BD, 3F, 4E
S@ DATA BD, 37,58, 35, @2, 84, @F. ED
55 DATA 3F, 4E, KD, 3F, 568, 33, 81, 86
6@ DATA &4, 03, 8F, 32, 33, 8K, 37, 35
&5 DATA A7, AR, 39

7@ FORX=&HIFRQ@ TO &H3FSA

75 READA$:A=VAL { "&H"+A%)

8& POKEX, AsNEXT:DEFUSRG=8HIFQ@
85 CLS:PRINT"TEST ADDRESS IF@@:®
92 M=USRS (&HIF2Q)

BHS, labels
+ Disassemble $BD B3 ED

$8D is juep to subroutine,
extended addressing mode;
therefore, $BD B3 ED is JSR
$B3ED.

+ Disassemble $86 6P

$86 is load A accumulator
immediate; therefore, $86 6R is
LDA #%6R.

+ Disassemble $44

$44 is an inherent instruction,
logical shift right A
accumslator: LSRA.

+ Disassemble $35 &

$35 is pull from the hardware
stack; $82 is binary 00000210,
indicating the A accusulator.
Therefore, the instruction is
PSS A,

* Disassemble $1F @1

$iF is transfer from register to
register; @ is binary OB
a1, The transfer-from
register is D (008 and the
transfer-to repister is X
(0ad1), Therefore the
instruction is TFR D,),

+ Disascewmble %10 BE 04 88

$18 B8E is a two-byte opcode for
load Y register immediate; the Y
register is 16 bits, so $04 82
is the 16-bit cperard,
Therefore, the instruction is
LDY #s8482,

+ Disassemble $81 88

$81 is compare A register
immediate; therefore the
instruction is CHPA #$OR.

Disassewble $08 81

$8Q is the opcode for decresent
memory direct; therefore the
instruction is DEC ($NN@1, where
MN is the direct page register.

Learning the 6809 105

Reverse video

+ Disassesble $86 6R C6 £@

$86 is load A accumulator
immediate, so $86 6R is LDA
#$6R, That means $0b 68 must be
another instruction. $Cb is
lcad B accumulator imsediate, so
$Ch 6@ is LDB #$68. You can't
fool me.

* Disascemble $A7 AR

$A7 is store A accusulator
indexed; AB is binary 101008008,
Referring to the chart, the only
postbyte that ends in 0088 is
4R+, 1RR® applied to 1818 makes
RR=01. @1 is the Y register.
Therefore, $A7 AB is STA Y+,

+ Disassemble $Rb 0@

$86 is load A accumulator
indexed. 680 is 10000028, This
is again R+ indexed mode, with
IRRE = 1008, RR = & = X
register, Therefore, $A6 08 is
LDA X+,

+ What does &H mean in BASIC?
Hexadecimal.

*+ If A$="BD", what is the value
of A after this statement:
A=VAL {“EH"+R%) 7

A equals decimal 189 (hex $BD).

* What does DEFUSRB=RH3F B
wean?

Defire the BASIC user entry
point number @ to be at $3F6R,

* How many characters (letters,
nusbers and symbols) does the
Color Computer display using
PRINT?

%.

* How many characters is the
Colar Computer capable of
displaying using POKE?

128.

106 Lesson 12

So there it is. A reasonably painful first hand-assembly,
resolved into a mere 12 lines of BASIC DATA statements,
POKEd in place and used as a subroutine via the USR
command. In this test program, the address transferred for
display is $3F00 — so you can look at the machine language
program itself. Will it work? No, it won’t. That is, not exactly
as you expect. RUN the program.

Well, you are looking at your own hand-assembly, but
something’s amiss. The letters are okay, but the numbers
are shown in reverse video.

A peculiarity like this is one of my reasons for preparing
these lessons with the Color Computer in mind. If you've
been using your Color Computer for a while, you know that
upper case characters, plus numbers and symbols, are
presented normally, but that lowercase characters are
represented by reverse video. What you're running into
here is the video display generator, the VDG. There’s a
software shuffle done by BASIC to accept your ASCII
information and translate it into VDG codes.

It’s bit time again. The video display generator contains
only 64 letters, numbers and symbols, all standard
uppercase characters. No lowercase or control characters
were included in the design and manufacture of this part.
To display any character in this set, then, only bits 0
through 5 in a byte are used. However, bits 6 and 7 are
connected to the VDG. Bit 7 turns on the low-resolution
color graphics, which BASIC calls CHR$(128) through
CHR$(255) — hexadecimal $80 through $FF. Bit 6 is the
tricky one. It is used to turn on the inverse-video mode for
the alphanumeric characters. When bit 6 is a one, normal
characters are seen; when bit 6 is a zero, reverse characters
are displayed.

Think back to my example of POKEing vs. PRINTing the
screen, way back in the first session. PRINTing the
characters resulted in their appearance in normal ASCII
order — control characters from $00 to $1F were not
displayed, $20 through $3F were numbers and symbols,
$40 through $5F was uppercase, and $60 through $7F was
reverse-video-style lowercase.

But POKEing the values to the screen resulted in
something different. Values $00 through $1F revealed
reverse-video-style lowercase, $20 through $3F displayed
a not-before-seen group of reverse-video numbers and
symbols, $40 through $5F showed the uppercase
characters in their proper ASCII position, and $60 through
$7F displayed the normal set of numbers and symbols.

The reasons should begin to come clear. If bit 7 is zero, then
alphanumerics are displayed instead of graphics. If bit 6 is
zero, all characters are displayed in reverse video mode. In
other words, the hardware of the Color Computer
understands that all characters from 00 00 0000 to
00 11 1111 — thatis, from hex $00 to $3F — are reverse
characters. Conversely, if bit 6 is one, all characters are

+7A = B
+ $40

$!9A:

$2A = 00/O 10/0
$eA=df0 oo
R

$32=
+ $40

372 - (2]

P32 =00// 0o0/0
$72=0//1 voro
Faa

displayed in normal video mode. The Color Computer
hardware then understands that all characters from
01 00 0000t001 11 1111 —thatis,fromhex$40t0$7F
— are normal characters.

The BASIC language works with ASCII, so this hardware
business is a pain. BASIC is forced to translate ASCII to
hardware and hardware to ASCII every time it does a
screen display! So whenever you write software in machine
language, you will also have to provide some sort of
translation. Here’s a summary:

If you want: You have to use:

ASCII $P@ to $1F, control functions Control software

without display.
ASCII $2¢ to $3F, numbers and symbols Hardware $68 to $7F

ASCII $4p to $5F, normal uppercase Hardware $48 to $5F

{no change).

ASCII $68 to $7F, normal lowercase Hardware $£8 to $1F

Innormal display (such as BASIC), hardware values $20 to
$3F are not used; these are the reverse numbers and
symbols. The program you just created, in attempting to
use legitimate ASCII values, used the hardware values for
reverse characters. That accounts for the funky screen
display.

Now you have enough information to get out of that
dilemma. Turn back to your hand-assembled listing and
locate the spots where a display character is established.
You'llfind address $3F1Cis supposed to be a star, hex $2A.
Glance at your documentation where the summary I just
gave you is printed. If you want to display $2A, then, you
actually need to use the hardware value $6A. Put that in
place. Type POKE &H3F1C,&H6A and hit <ENTER>.
That’s POKE &H3F1C,&H6A <ENTER>. That should
give you a proper star; try it. Type GOTO085 and hit
<ENTER>.

The stars are okay now. The spaces are next. A space is $20,
which means the hardware requires a $60. In your hand
assembly, you’ll find that space at address $3F1E. Change
it now. Type POKE &H3F1E,&H60 and hit <ENTER>.
That's POKE &H3F1E,&H60 <ENTER>. The spaces
should be cleared up. Type GOTO085 and hit
<ENTER>.

Only the reverse numbers remain to cure. This happened in
the ASCII conversion subroutine that began at address
$3F4E. Find that subroutine. Ataddress $3F52, an offset of
$30 was added to convert from the number 0 through 9 to
ASCII CHARACTERS “0” through “9”. Hex values for
these are $30 through $39, meaning the hardware needs
$70 through $79 to present the numbers correctly. So the

ASCII to VDG

* What does VDG mean?
Video display generator,

+ How many unique characters is
the VD6 capable of displaying?

“l

¥ Why can the VDB display b4
characters, whereas the Color
Computer can display 1287

Because the Color Computer
displays 64 norsal characters
and 64 reverse~video
characters.

bhat do the ASCI] codes from
$08 to $IF represent?

Control vodes (carriage return,
backspace, tab, etc.)

* What do the AECII codes from
$28 to $3F represent?

Numbers,
punctuation.

symbols amd

* What do the ASCI] codes from
$48 to $5F represent?

Uppercase (capital) letters.

€ What do the ASCII codes from
$68 to $7F represent?

Lowercase {(small) letters.

What do VDE codes $88 to $IF
represent?

Lowercase {reverse) letters,

What do VDB codes $28 to $3F
represent?

Reverse-videoc numbers, symbols
and punctuation.

What do VDB codes $48 to $5F
represent ?

Uppercase letters.

Learning the 6809 107

Program #19

+ What do VDB codes $68 to ¢7F
represent?

Numbers, sysbols and
punctuation.

+ To create the display "PeD7
#* 8E* in ASCIL, what ten bytes
would be used?

$41 30 45 37 20 2A 2R 2B 3B 45
To create the display “PeD7
BE" in VDB terws, what ten
bytes would be used?

$41 70 44 77 G GR GR 6@ 78 43

108 Lesson 12

offset at address $3F583 has to be changed from a proper
ASCII $30 to the hardware’s demand of $70. Do it. POKE
&H3F53,&H70 and hit <ENTER>. That's POKE
&H3F53,&H70 <ENTER>. That should cure the

numbers. Type GOTO85 and hit <ENTER>.

That did it. The address and data display is complete. That
video hardware shuffle is a little tricky, so if it’s not clear to
you at this point, please review from the start of this
session. You can break now. Otherwise, I have a program
for you to load.

Program #19, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L. and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display
the program. Type P#.* and press ENTER. If the right-hand
side of the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the program’s start and try again. For severe
loading problems, see the Appendix.

3Fae

IFQ@
3F@3
3Fa7
a3F@9
3FaB
3F@D
3FaF
3F11
3F1i3
3F1l6e
3Fi8
3F1B
3F1D
3F1F
3Fe1
IF23
3FE5
3F27
3F29
3F&C
3F2E

IF 3@

3F3e

3F34

3F36

3F37
3F39
3F 3R
3F3R
3F3C
3F3D
3F4@
3F43
3F45
3F47
3F4A
3F4D

E3ED
Qa2
agal

3F4E
3FS8
az
arF
3F4E
3FS8

Ralad
auiia
R@iz@
Qi ze
Q14D
203152
Q@160
aQi7e
RQa182
Qa13e
ez 2@
@aazi@
ral*g=ectv]
QB23@
a4
relab=gtre]
aazed
aaz7d
aez82
aac3a
2a30a
aazia
QAZ2B
Q@33
QR34
QA3ISA
Uulrded =g
au37a
Qazaa
a@3sa
QAd42Q
ags 1@
Q4@
Q43¢
QR44R
Q2459
Q@46Q
Q47
2480
2R43&
Pdrastrdrg
Qastia
aasze
va5s3a

INTCNV
RYTES
LINES
*

*

LLDOP

EBLOOP

*
BYTEIT

EQU
EQU
EQU

ORG

JSR
LDY
TFR
LDA
S5TAR
LDA
STA
TFR
JSR
TFR
JSR
LDA
LDE
STR
STA
STA
STH
LDR
JSR
STE
DEC
EBNE
DEC
BNE
RTS

PSHS
LSRA
LSRA
LSRA
LSRA
JBR
JSR
PULS
ANDA
JSR
JSR
RTS

$R3ED
$2Q2Q
$Q2@1

$3IF00

INTCNV
#HQ480Q
D, X

#8
(LINES
#8
(RYTES
X, D
BYTBIT
E, A
BYTEBIT
#36A
#$6Q
,Y+

. Y+

s Y+

S Y+

s X+
BYTRIT
. Y+
(BYTES
ELOOP
(LINES
LLOOP

CONVRT
DISPLY
A

#EAF
CONVRT
DISPLY

QD54 *
3F4E 81 an aas5@ CONVRT CMPA #$0R
3FS@& =4 a3 aesee RCC LETTER
3FSz 8B 7a aes7e ADDA #$70
3F54 39 2as8e RTS
3FSS 8B 37 Q253@a LETTER ADDA #$37
3FS7 39 [Yl RTES
. 3Fs8 R7 A pacz@ DISPLY STA s Y+

3FS5A 33 i =3t RTS

Qaad QRELR END

2aaa2 TOTAL ERRORS
BLODP 3Fa7
BYTRIT 3F37
BYTES Paralridry
CONVRT 3F4E
DISPLY 3FS8
INTCNY B3ED
LETTER 3FS55S
LINES Qa1
LLoop 3FaD

Here’s the complete program you just created. You have
the entire mnemonic listing available, which the assembler
can convert to machine language very quickly.

You’'ll assemble this, go right into BASIC, and load the next
program on the tape. Here’s how it goes. Type A/IM/ACQ
and hit <ENTER>. The listing will scroll by, and the
program will be assembled at $3F00. When the star prompt
and cursor return, quit the editor/assembler: Type Q
<ENTER>.In afewseconds, the Extended Color BASIC
message will appear. You know the program is at $3F00, so
protect memory.

If you've never protected memory before, the purpose is to
tell BASIC that a certain area is off-limits. BASIC will
make no attempt to use protected memory, except through
PEEK, POKE andDM statements. You can refer to your
BASIC manual for details. Type CLEAR 200,&H3F00 and
hit <ENTER>. That’'s CLEAR 200,&H3F00. Now you
can load the next program.

Program #20, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S}
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For sever load-
ing problems, see the Appendix.

1@ DEFUSRQ=&H3IF @@
2@ CLS

3@ PRINTE@, "":PRINTEQ@, " ;
4@ INPUT"ADDRESS" ;A%

S@ A=VAL ("&H"+A%)

6@ IFA) 32767 THENA=A-6SS36
72 M=USR (A)
8@ GOTO3Q

In-memory assembly

What is the orocess of
translating mnewonic (source)
code into binary {object) code
called?

Assembly.

*# What is the oprocess of
translating binary (object) code
intc wmmemsonic (source) code
called?

Disassembly.

¥ What is the term for binary
digit?

Bit.

What is the term for eight
binary digits (bits)?

A byte,

*# What is the term for four
binary digits?

A nybble (also spelled nibble).

What nusber system represents
binary digits?

The binary system,
What number system organizes
the binary nusbers into

convenient size?

The hexadecimal system.

Learning the 6809 109

Summary: Architecture

* What does ASCII mean? If you LIST this program, you can see that it is simply a
little BASIC input routine which subsequently calls your
The fmerican Standard Code for machine-language subroutine. Since the value transferred

Information Interchange. is an integer, the range is -32768 to +32767. To get at
addresses higher than 32767 (that’s hex $7FFF), there has
What are the ASCII codes? to be a conversion. Line 60 is a little trick that’s good to

know. So assuming the assembly went well, then your
Control codes; numbers, syshols, program should reside at $3F00 right now. RUN the
and punctuation; and upper and program.
lowercase letters.

Enter any address from $0000 to $FFFF. There’s memory,
#What is the term for a 64 bytes of it. Play around with this program for a little bit,

cosputer instruction? and then come back to this tape for a summary.
fMn opcode.
What is the term for an
3 ?
opcode 5 data?’ Please examine a number of areas of memory using this BASIC
program. When you are confident of the significance and appli-
fin operand. cation of this process, return to the tape.

% What is the terw for the
desipn and purpose of a
grocessor?

This course is halfway now. If you're a newcomer to
assembly language, you're probably just a little
overwhelmed. The jargon and the concepts take do some
time to settle. On the other hand, if you’re an experienced
programmer here just to learn the specifics of the 6809,
then I know you're itching to get on with it. In either case, I
would like you to stay with me for a summary of the main
points from these past twelve sessions.

Its architecture.

+ What is the architecture of
the 6889 processor?

Accusulators A and B; index
registers X amd V3 stack
pointers 8 and U; direct page
*!!?5“" DP; condition code Assembly language is not BASIC, but forms a perfect
register CC; progras counter PC; companion to BASIC, as you have seen with the programs

65,536 bytes of mewory. so far. It is capable of easy access to functions not easily
available via BASIC, such as reverse numbers and

What is an addressing mode? symbols, and is fast and flexible. From assembly language
is built the language of BASIC itself. o

The way in which a machine

language program gets its Assembly language represents computer instructions.

information. Computer instructions are actually electronic signal

patterns best represented by the binary number system.
What are the 6809's addressing Binary numbers are difficult to recognize, so binary
modes? patterns are visually organized by using a single symbol for
each group of four bits. This is the purpose of the
Inherent, repister, immediate, hexadecimal numbering system 1 through 9 and A through
extended, direct, and indexed. F. Logical arrangements and patterns of binary digits were
used in the creation of the American Standard Code for
Information Interchange, ASCIL

A processor can interpret binary patterns as either
instructions or data. The instruction pattern is known as
the opcode, and the data pattern is called the operand. All
binary patterns in a program are found in memory, and it is
only the order and context which differentiate opcodes
from operands.

Each processor has a unique design and purpose. This

110 Lesson 12

:

i

design and purpose is known as the processor’s
architecture. The architecture of the 6809 is particularly
strong in the way it accesses information. The architecture
of the 6809 consists of a program counter PC, two
arithmetic-performing accumulators A and B, two index
registers X and Y, two stack pointers S and U, a condition
code register CC (also called the flags), and a direct page
register DP.

Summary: Addressing

* What do RAM, ROM, CPU, SAM,
PIA, and VDG mean?

RAM means read/write mesory,
also known as ramndos-acress
memory; ROM means read-only
memory; CPU means central
processing unit; S5 means

T
BN

}
1
T

synchronous address multiplexer;
PIR means peripheral interface
adapter; and VDG means video

display gemerator.

i

; To manipulate these registers through a program, the
+ binary code must be presented to the instruction decoder.
'H Because binary and hexadecimal representations are
i
l

T
1

machine-level instructions with little value for the human
programmer, instruction names are used to ease the

F

RN
INEREE

®*What is the oprocess of
translating mmemonic {source)

programming process. They are called mnemonics. A
program written in mnemonics cannot be executed; only
the machine code the mnemonics represent can be
executed. The process of translating mnemonics into
machine code is called assembly. The program that
permits editing mnemonic code, also called source code, is
aneditor. The program that translates this source code into
machine code, also called object code, is an assembler.
Usually these are combined in a single program known as
an editor/assember; this series uses the program
EDTASM+ as its editor/assembler.

Amachine language program must access information. The
way it finds this information in memory is called an
addressing mode. There are several major addressing
modes in the 6809 processor. Inherent addressing has the
data implied as part of the opcode itself. Register
addressing has the data available in one of the 6809
registers. Immediate addressing presents the data in the
program memory immediately following the opcode.
Extended addressing presents a complete 16-bit memory
address at which the data can be found. Direct addressing
presents an 8-bit address which is combined with the DP
register to locate the data in memory.

Indexed addressing uses registers and offsets to calculate
the address in memory at which data can be found. This
mode is complex and flexible, with automatic incrementing
and decrementing of registers as the Instruction is
executed. Relative addressing presents a value which
directs the program to a position in memory relative to the
current position of the program counter.

Information is accessed by processor instructions. Among
these are store and load, which save and retrieve
information in memory; arithmetic instructions such as
add, subtract, decrement, increment, and negate; logical
instructions such as AND, OR, complement, and
Exclusive-OR; bit shift and rotation instructions; jumps
and branches to other program locations or subroutines.

Programs and information are stored in memory. The
organization of memory is called a memory map, which can
contain read-write memory, read-only memory, special-
purpocse memory registers, and input/ocutput ports.

code into binary (object) code
called?

fssembly.

What prograssing tool perforss
this task?

An assembler.

* How many topics sust you know
to continue this course?

Six topics.

t What is the first topic you
need to know to continue this
course?

How to use the MCHBROE data
booklet.

* What is the second topic you
need to know?

How to enter and edit prograss
using EDTAGH+,

+ bhat is the third topic you
need to krow?

How to count in binary and
hexadecimal.

What is the fourth necessary
topic?

How to create BASIC orograms
which POKE msachine language into
mewory.

Learning the 6@9 111

Summary: Special devices

#What is the fifth ites you
nead to know?

All the 6889 instructions
oresented up to the igth
session.

What is the final topic?

The addressing wmodes presented
up to the 12th session.

How many questions have you
answered so far in this course?

895. Bet you didn't know that.

112 Lesson 12

The Color Computer has a specific memory map and
several hardware devices. Read-write memory, or RAM, is
located in the bottom two quarters of the memory map; the
BASIC language in read-only-memory (or ROM) occupies
the third quarter; most of the upper quarter is occupied by
cartridge ROM when it is plugged in.

The top 256 bytes of memory have a special purpose, and
are used by Peripheral Interface Adaptors (the PIAs) as
input/output ports for the keyboard, cassette, printer,
video display, and other reserved purposes. In the Color
Computer, the most sophisticated of these functions is
performed by the Synchronous Address Multiplexer (the
SAM), which controls the memory circuitry, the processor
speed, and the Video Display Generator (the VDG). By
using a combination of the PIAs and the SAM, the VDG can
be placed into several modes of alphanumerics and low-
and high-resolution color graphics, and can be made to
display any area of memory. Machine-language programs
most easily control these devices.

Machine-language programs for control, display or any
type of programming can be assembled using a tool such as
the editor/assembler, or can be assembled by hand using a
list of commands and their respective binary codes. Hand
assembly is tedious, but is valuable for learning to create
compact and efficient programs, and for understanding the
specific actions taken by the processor. Confident hand-
assembly canreveal peculiarities in a computer, such as the
alphanumeric display method in the Color Computer.

So that’s a very fast trip through the past twelve sessions. I
recommend that you take a breather now and review these
lessons, because I plan to pick up the pace from here on.
Things you must know to continue are: how to use the
MCG6809E data booklet; how to enter and edit programs
using EDTASM+; how to count in binary and
hexadecimal; and how to create BASIC programs which
POKE machine-language information into memory. You
must also know the 6809 instructions that have been
presented so far, and all the addressing modes which I've
explained.

I won’t have time to summarize all of this again, so if you
think you need to, please review now. I can’t emphasize
enough the need to review, because I can tell you from
experience that if you get in to this too deeply and your
background is not secure, the new information will muddy
the old information so badly it will all become useless.

Now that I've issued my dire warnings, I hope you will
continue this series. I'll be presenting graphics and sound
software soon, and giving you pointers on making your
programs short, be quick, and run bug-free. Speak to you
next time.

HAND ASSEMELY
8686 D

/002 010 [opo ozl

Hello and welcome back to the final half of “Learning the
6809.” The pace will quicken somewhat, so I hope you've
given yourself a solid foundation in the essentials of
machine language programming thatI presented in the first
half of this course.

The topic this session is timing: that's the careful
organization of computer instructions to perform tasks at a
known speed. Unlike mechanical timers or ordinary clocks,
the computer operations you can be certain of actually
simplify this task. You are certain of the clock speed, that is,
the number of fixed pulses per second by which the
processor completes its instructions. And, you can identify
the specific number of those clock cycles each instruction
requires, since this is consistent. .. and the full information
is provided with the data booklet.

You may not be as impressed as I am with this concept. But
consider that all the real-world interfacing of the computer
depends on some sort of timing. Here are just a few of those
interfacing tasks:

1. Communication with a printer is timed. A
printer connected to the Color Computer
expects precisely 600 binary digits per second.

2. Cassette input and output is astoundingly
precise. Not only is the timing of the binary
digits critical, but the shape of the sound’s
wave recorded on the tape is important. Care
in these timings overcomes the inherently poor
quality of portable cassette recorders.

3. Keyboard input even uses timing. As the
metal contacts of the keys close, a little
electromechanical bouncing takes place. This
bounce must be timed through so as not to
produce unwanted double or triple characters.

4. BASIC sound commands need frequency

The very speed that makes
machine language a programeing
delight also makes it difficult
when dealing with a real world
operating in human terms. You
start wishing for BASIC after a
few hours of meticulously timed
program actions, But you'll
never be able to create sound or
games with real punch and
clarity from BASIC, s0
machine-language bit twiddling
is the solution. Orward!

What is the clock speed of the
Color Computer?

.89 MHz 894,886 clock pulses
per second).

#If a printer expects
information at 608 binary digits

per second, how many clock
pulses is that?

Approximately 1,492 clock
pulses.

% If a given computer activity
had to take place 10& times per
second, how many clock cycles
would that be?

clock

Rpproximately 89,489

cycles.

Learning the 6809 113

Timing

At 1,008
second?

activities per
fpproximately 8,949 clock
cycles.

+at 16,000
second?

activities per

Approxisately 895 clock cycles,
What does Hz mean?

Hz wmeans Hertz, or
{pulses) per second.

cycles

+ What does MHz mean?

MHz wmeans megabertz, or million
cycles per second,

* Which of the following require
consideration of timing:
cassette input and output;
serial printer output; keyboard
input; sound output.

All reguire consideration of
timing.

% Why does cassette input and
output reguire timing?

Because the data must be
recorded and received at a known
rate,

* Why does serial printer output
reguire timing?

Because a serial printer sust
receive data at a known rate.

* Why does
reguire timing?

keyboard input

Because mechanical contact
bounce must be ignored (timed
through).

Why does sound cutput require
timing?

Because sound is made up of

specific frequencies, and
frequencies are inherently
time—based.

114 Lesson 13

information in order to produce proper musical
pitches.

These four examples are only the most obvious. Subtle
kinds of timing permeate machine language pro-
gramming.

I'd like to start with the simplest kind of timing, the delay
loop. No doubt you’ve used FOR-NE X T loops in BASIC to
time such things as screen presentations and Inkey$ input.
Another interesting use of delay loops is for simplified
communications timing . . . in the example I've got for you,
it’s used for sending fast and accurate Morse Code. Now
Morse Code might be a little bit of an anachronism in this
computer era, but it’s interesting and I think quite a lot of
fun.

First, conceptualize the problem and establish some
parameters. Morse code is that pattern of long and short
beeps that has been used for over a century to
communicate across telegraph wires and via radio. In this
example, the code might be sent from the keyboard, or it
might be sent from a prepared, edited message. Also,
you’'ve got to establish the speed of code transmission and
choose the pitch of the beep. Finally, the character set to be
used must be selected (that is, the whole set or just the
alphabetic characters).

Let’s take the last first, and say that-the entire 6-bit ASCII
character set should be used. Those are numbers and
uppercase letters. Let’s set the beep at a clear 1,000 Hz —
1,000 cycles or vibrations per second. And finally, establish
the transmission speed at about 10 words per minute.
Before actually programming these last two items, keep in
mind that it might be wise to make both the beep frequency
and the transmission speed flexible, so they can be changed
by the operator to match the circumstances.

Now to the concept. It seems to break down into a few
simple steps coupled with a some crucial subroutines. It
looks like this. A message is found somewhere in memory.
The code for each character is located in a table of Morse
codes. After the code is identified, it is used in conjunction
with two or three subroutines to produce beeps and
silences of the proper timing.

Now I don’t know very much about Morse Code, but from
what I'm told, it consists of short and long beeps known as
“dits” and “dahs.” A “dah” is roughly three times as long as
a “dit,” and all beeps are separated by ‘“dit’-length
silences. Letters are separated by ‘“dah”-length silences,
and words, when separated at all, are separated by about
two “dahs.”

Before I get too far ahead, let me play for you a little bit of
professional Morse Code . ..

A o=
B 600
[-3 =)

RN
o
!
[+

oci=Jo
[== — {1
es00

L=]
r=ora
enrjoo

i
i

ZIrXUHI QM

(o]
ga
u o
i

f ocorio
& s=argocy
R o0

S ooco
Te=

U eor=

Y ccot=g
W o
X ss3cot
Y oy
Z Sthoo

L=]
coETe3r
ocooTIen
oooor
LXX-T-7-3
=oooo
At 000
=i e=T 3100
1 —R 1T

VORIV BN~

| — R —=F_—F—1—|

BRED o oOrROTIASCET]
Conu, 4 SESco ez
Wi 3 ATIERI 000
? soitloc
NOSROREs otAr=eie o
HYPHER — B 0 Cco 0=
4N [/ maeociec
() =ermmoen
%N Slcorno

What you just heard was the message “Hello how are you.”
It’s a series of pure, regular beeping tones and silences. You
might think that Extended Color BASIC has a perfectly
adequate group of SOUND and PLAY commands, tailored
to this kind of task. Unfortunately, they won’t do for a
number of reasons. First, the beep length is a fixed multiple
of the shortest length. Morse Code speeds often fall in
between these fixed lengths. Next, the BASIC
programming is very clumsy, using a long array,
substantive error-checking, and various loops. But worst of
allis the slight but distinguishable “gargling” in the sound,
an adulteration of the pure tone with pops and burbles. At
first — and especially if you are listening on an inexpensive
television — that impurity may be obscured by the limited
TV sound. But if you listen through a separate amplifier
hooked to the cassette output, the unevenness of the sound
becomes distinct. Think about those things as you load and
run the following BASIC program,

Program #21, a BASIC program. Turn on the power of your
Extended Color BASIC computer. Whe the cursor appears,
type CLOAD and press ENTER. The computer will search (S}
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs.
rewind to the start of the program and try again. For severe
loading problems. see the Appendix.

CLEARS@@: DIMAS (6Q)
FORX=32 TO 9@
READAS (X—32)
NEXT
CLS
PRINT"TYPE YOUR MESSAGE"
PRINT" (MAXIMUM 255 CHARACTERS)
LINEINPUTES
PRINT : PRINT"SENDING MESSAGE..."
FORX=1TO LEN(E%)
A=ASC (MID$ (B$, X, 1))
A=A-32:PRINTMIDS (E$, X, 1) 3
C$=A% (A)
IFC$="SP"THENZZ
PRINTC$" “;
FORY=1TOLEN (C$)
O%=MID$(C$,Y, 1)
1F@$=". " THENSDUNDZ4@, 1
1IFQ$="—"THENSOUNDZ4®, 3
FORZ=1TOS@:NEXT
NEXT
: FORZ=1TD1@Q:NEXT
NEXT
GOTOS
DATASP, SP, . -..—.,SP, 8P, 8P, 5P, . ~~——. ,

[V IR i A o U

1@

T T TTe Ty T T

ORI (O (U (O (I (N (]
MW~

P g o
-1 I

-3

ye
- ===...,8P,SP, 5P
27 DATASP, .~ —..

s

-’_——
28 DATA. ==, ——c =4+ =uy-

You've just heard a BASIC solution to the problem of
transmitting Morse Code. For the simplest of purposes,
this kind of code transmission might be adequate. But we
can do far better in machine language. The timing and

Learning the

BASIC Morse

* Is timing required for Morse
Code?

Yes.

Name the timing considerations
needed for Morse Code.

The lemath of the "dit", the
length of the "dah®, the length

of silences, and the freguency
of the beep.
#How long is a "dah" with

respect to a "dit"?
Three times as long.

What commands produce sound in
BRSIC?

SOUND and PLAY.

How long is the shortest BASIC
beep {(using SOUND X,1)?

Approximately 1/14 of a second.
{You weren't told that in the
text).

If a loop contains two load A
immediates, two store A
extendeds, amd ome branch to
make a complete loop, how many
clock cycles are required for
this loop?

2 times 2 cycles, plus 2 times 5
cycles, plus 2 cycles ... a
total of 16 cycles,

* At 894,886 clock cycles per
second, how many loops is this?

894,886 divided by 16, or 55,930
cycles,

.—,SP, 8P, ——. . -

6809

115

Sam’s Roadside Kitchen

% What is the main disadvantage
of producing sound using BASIC?

The "gargling” or unevenness of
the sound.

¥ What causes the “gargling" of
the sound?

An interrupt.

Three things happen whern an
interrupt occurs, What are
they?

The microprocessor finishes its
current instruction, saves
important information, and
follows programeing instructions
in reponse to the intervupt.

¥ What is the process of acting
on an interrupt called?

Servicing the interrupt.
What causes an interrupt?

When an external signal line
changes fros one to zero.

What three things happen when
an interrupt occurs?

The microprocessor finishes its
current instruction, saves
important information, and
follows programing instructions
in reponse to the interrupt.

* Can more than one interrupt
oceur?

Yes,

¥ Which interrupt gets taken
care of?

The one with higher priority,

What is the provess of taking
care of the interrupt called?

Servicing the interrupt.

116 Lesson 13

control of the sound can be intimately precise, and that
annoying gargle will disappear.

What, then, do you suppose causes that gargling sound? It
seems to be a regularly recurring group of little hiccups as
the tone proceeds. In fact, those hiccups are the time it
takes the computer to briefly abandon the sound program
in progress and perform other tasks. It is responding to an
interrupt.

Practically all microprocessors are provided with electrical
connections known as interrupt lines. When these
interruptlines are made to change from one to zero by some
external happening, the microprocessor finishes its current
instruction, saves important information, and follows
special programming instructions in response to that
interrupt.

It’s like one of those drive-up fast-food places. We take you
now to Sam’s Roadside Kitchen in Roadside, New Jersey,
where the sign reads “Honk for Sam’s roadside drive-up
service noon to 6 only. Other times honk at your own risk™ ..

Marge the Waitress: <indoors, talking to cook> One fries,
two BLTs, three chili dogs . . . <honk> Alright, alright.
<back to cook> ... and one onion rings. Get those ready.
There’s a guy out honkin’ that thing like Little Richard.
<going outdoors> Yeah, what’ll you have?

Car one: Three burgers, two fries, a shake.
Marge: Ya want bunny burgers or buddy burgers?

Car one: One bunny burger, two buddy burgers.

Marge: <indoors again>. One bunny, two buddies, fries.

Where’s my order? <to counter> Anything else, Joe? How
’bout you, Mac?

Mac: Yeah, gimme another dog, will ya Marge? With onions
an’ cheese, too.

Marge: <to cook> Cheese dog onions.
Kitchen: Orders up.

Marge: <tc cook> Hey where’s my steak? And what about.
.. <honking> . . . the chili dog. Damn. Gotta get that.
<outside again, honking continues> Yeah, yeah,
whaddaya want?

Car two: Gimme three bunnies and. .. <honking from third
car>

Marge: <to third car> Hey fella I'm busy. Sit on it till I get
to ya. <back to car> Three bunnies. What else, and make it
quick.

O ON ON oM

OF OfFF COFF OFF

RO
L
7N
SERVICE.
ROJTINE

Car 2: How about filet mignon and truffles and leeks
vinaigrette. . .

In this example, the restaurant was the computer, and
Marge its microprocessor. The cook and customers served
as program and storage memory. The car horn was the
interrupt. Recall how Marge finished only the immediate
task, and then went out to take care of the drive-up
customer. In computer terms, that process is called
“servicing the interrupt.” When servicing an interrupt, the
computer saves program counter and registers so that all
information is intact when it returns from the interrupt
service routine to finish its previous task. Interestingly,
Marge chose to put the third honking customer on hold
while she finished with the second. In that case, the
interrupt in progress had a higher priority. Had the third
car been an old favorite customer, however, Marge might
have serviced that interrupt first, leaving the current task
incomplete until the interrupt service routine was done.

Finally, Sam’s sign said that drive-up service was from
noon to six only. Other times, honking customers would be
ignored. That process is known as masking an interrupt.
They’ll be much more talk about interrupts and how they
are used later; right now, we only want to know how to get
them out of the Morse Code beep. To do that, you have a
little reading ahead.

Please read the information on interrupts in the MC6809E data
booklet. The condition codes are described at the top of page 6,
the vectors are shown in Table 1 on page 6, and an explanation
is presented in the first column on page 9. Return to the tape
when you have completed the reading.

The most important thing you've discovered about
interrupts, at least with respect to the Morse Code
program, is that the interrupts can be turned off — masked,
that is — by using the condition code register. Bits 4 and 6
are responsible for interrupts; there must be some way to
use logical functions AND and OR with the condition code
register to mask bits 4 and 6 in or out at will. There is.

Turn to the MC6809E data booklet, pages 30 and 31.
You'll find that ANDCC is a special-purpose instruction
available only in the immediate addressing mode; so is
ORCC on the next page. You might want to check me on
paper for what follows. If you wish to set bits 4 and 6 to one
— that is, turn the interrupts off — you would OR the byte
with binary 0101 0000. Bits 0 through 3, 5 and would
remain unaffected. To turn the interrupts on you need to
set bits 4 and 6 to zero; to do that, you would AND the
condition code register byte with 10101111, In either case,
the original condition codes for carry, negative, zero, half-

Learning the

Interrupts

* Can interrupts be ignored?
Yes.

* What permits the processor to
ignore an interrupt?

Masking the interrupt.

* Is there an interrupt taking
place when BASIC is running?

Yes.

* What is ome effect of the
interrupt?

R *gargling® in the SOUND
command.

¥ What causes the pargling?
The time taken to service the
interrupt; the interrupt service

rout ine,

Can sound be produced without
"gargling®?

Yes.

* How can sound be produced
without gargling?

By oproducing it in wmachine
language.

* How can machine language stop
the gargling?

By turning off the interrupt.

* bhat is the proper term for
turning off an interrupt?

Masking the interrupt.

What determines whether an
interrupt is masked or enabled?

The cordition code register.

¥ What part of the condition
code register determines whether
an interrupt is masked or
enabled?

Bits 4 and &,

6809

Encoding Morse
* What masks an interrupt?

Setting its condition code bit
to 2 one.

+ What commands can be used to
affert the condition code
register directly?

ANDCC and ORCC, both ismediate
instructions.

* What comdition code bits
determine whether interrupts are
masked or enabled?

Bits 4 and 6.
¥ that command specifically
masks out {(turns off) both

interrupts?

ORCC #$58 (binary 8101000@).

What command specifically
enables {turns on) both
interrupts?

ANDLC $$AF (binary 1018i111).

Three things happen when an
interrupt occurs. What are
they?

The microprocessor finishes its
current instruction, saves
important information, and
follows programming instructions
in reponse to the interrupt.

¥ For purposes of clarity and
simplicity, this session assumes
that Morse Code is a maximum of
5 beeps long. For letters and
numbers this is true; but
punctuation requires & beeps.
These exceptions will be handled
by modifications to the progras
in the next session. Five beeps
are assumed to demonstrate the

dragatic simplicity of code
translation. Since code
translation (RSCII to IBM's

EBCDIC, Baudot to ASCII, printer
translations, etc.) is an
important part of
machine-language programeing,
learning to do it the simplest
way is important.

118 Lesson 13

carry, overflow and “entire flag” would be preserved, but
bits 4 and 6, the IRQ and fast IRQ interrupts, would be
changed. To set interrupts on, then, AND with hex $AF; to
turn interrupts off, OR with hex $50. Much more later.

Discussing interrupts has taken this lesson well out of its
way. The topic was timing, and specifically, the timing
necessary to produce pulses of sound in a known order,
with a known pitch, and at a known speed. I'll turn back to
that now.

Morse Code was a brilliant invention. It provided a
compact method of transmitting letters. It was fast,
because the most-used letters contained less beeps than
the least-used letters. It accommodated all physical talents
because trained operators could send and receive at high
speed, whereas novices could still be understood at only a
few words per minute. The compactness of Morse Code,
however, increases the programming difficulty for us. The
letter E, a single dit, contrasts with the letter Z, dah dah dit
dit.

For this program, the cross-listing of ASCII codes and
Morse Code has to provide two kinds of information: the
pattern of dits and dahs, and also the total number of beeps
in the letter. The longest character has five beeps, which
could be stored as five bits in a byte . . . dits could be
represented by zeros and dahs by ones. The remaining
three bits could be used to indicate the length of the Morse
character. One byte might do the job.

The next question is how to arrange those bits -within the
byte. The dit-dah pattern could go on either side of the
byte, as could the number of beeps. But one arrangement
makes special sense. Recall that in an earlier lesson, a
binary-to-ASCII conversion was performed. It was always
necessary to make sure the nybble was to the right side of
the byte to be in the proper form. That’s the case here, too.
By keeping the rightmost three bits reserved for the length
of the Morse Code, the only work you need do is mask the
leftmost five bits to retrieve the original number.

Follow me in the book for this. The letter S is dit-dit-dit.
According to my suggestion, dit-dit-dit becomes binary
000. The length is three beeps, so the length is binary 011.
Place the beeps at the left and the length at the right and
you've got the composite byte 000 00 011. By contrast,
the letter O is dah-dah-dah. It translates into 111 for the
code, and again to 011 for the length. The composite code is
111 00 O11.

But even better is what you can do with the encoded beep
information at the left of the byte. By rotating the byte to
the left, the beep bits drop into the carry flag in head-first
order. Dit-dah-dah-dit, represented by 0110, rotates left
and falls into the carry flag in the precise order0-1-1-0, or
dit-dah-dah-dit. By using the carry flag as a condition for
program branching, the process is assured. The program
can branch-on-no-carry to a““dit”-length beep, and branch-

[ETFIR[x]n]2]v]e]

cr [o]s]o]r]o]o]ofo] 5D

377870 EN

L 2¢)] ENODED ROR. MeRSE.
&
* AL, A=0¥%
. B=48
) @Gﬂ (el s[o]o[To]o]e]
A, A =03

A, B= O

.

5[}0:1 BEEGEEERS
kO, A= o 2
AL B= 20

%Z]Qﬂ [e]ofs]e]o]o]o]o]
MO, A =0
AL, B =4]

”EH:JLOI [elo]o]o]/]o]
AL, A= OO

on-carry to a “‘dah” length beep.

In actual program form, the message SOS might be
encoded like this:

ASCII Morse ASCII Morse Morse
Letter Code Code Binary Hex

S e $53 0ppppR1l 863
0 --- $4F 111gpp11 $E3
S . $53 ppoppplIl $p3

I'dlike you to take a break now and draw up a chart of all the
ASCII characters and their Morse Code equivalents, as
shown in the sample above. This will give you an intimate
sense for the way in which this code is being assembled.

On a sheet of paper, list the characters in ASCIl order, their
Morse Code equivalents, their ASCII codes, their Morse binary
encoding, and their encoded Morse hexadecimal representa-
tion. When you have completed the sheet, return to the tape.

Now you’ve got a complete cross-reference table in hand,
and you understand the general workings of the program
you've got to create. Let me review the structure so far.

1. Pluck an ASCII value from the message.

2. Find the encoded Morse equivalent in the
table.

3. Use the length information in the rightmost
three bits as a counter.

4. Shift the leftmost five bits into the carry
flag.

5. Transmit dits or dahs based on the carry
flag, and for the number of beeps held by the
counter.

6. Pick up the next letter and continue.

Thislookslike areasconable structure; it should resolve into
this simplified program (follow me in the book):

START iDX MORSE * Encoded Morse in memory
LDY TEXT * ASCII message in memory

AGAIN LDB Y+ * Get ASCII, point to next
SUBB OFFSET * Strip ASCII offset
LDA B,X * B+X = Morse table position
TFR A,B * Save encoded Morse

ANDA $87 * Keep the code length

Transmitting beeps

+ What do ASCII codes $2@
through $3F represent?

Nusbers, symbols and
punctuation.

What do ASCII codes $40
through $5F represent?

Uppercase letters.

The following questions deal
with the specific progras being
created in this session.

In the structure chosen for
this example, where is the Morse
Code length information stored?

In the rightmost three bits of a
byte.

* Where is the actual Morse Code
pattern stored?

In the leftmest five bits of a
byte.

* How is the length information
vetrieved?

By wmasking the byte with binary
00000111,

tIf the byte is in the A
accumulator, what instruction is
used to mask in the right three
bits?

ANDR #%87

* "Dit" and "dah*® are
represented by what
information?

"Dit* is zero, “dah* is one.

% Where is the "dit® and “dah*
inforsation stored?

In the leftmost five bits of a
byte,

*# How is the information
retrieved?

By rotating the bits leftward
into the carry flag.

Learning the 6809 119

Quiet

*# What is the advantage to
having the code length on the
right side of the byte?

It only needs to be masked, not
shifted, to become the correct
value,

What is the advantage to
having the code beeps on the
left side of the byte?

There are two advantages: they
are in place to be rotated left
into the carry flag, and they
are in the correct order fros
first to last as they are
rotated into the carry flag.

% The letter § is dit-dit-dit.
What is its length in binary?

Its length is three beeps, 811
binary.

The letter 5 is dit-dit-dit.
What is the binary equivalent of

its beeps?

The binary equivalent of the
beeps is 098.

+ What is the complete encoded
byte for letter 5§, pattern
dit-dit-dit?

Pattern 888 plus two unused bits
{08) plus the length 611. The
result is GPMB0B11.

What is the hex eguivalent of
binary 000B2@11?

Binary 00000811 is hex $83.

% Name the timing considerations
needed for Morse Code.

The length of the “dit™, the
length of the “dah", the length
of silences, amd the fregquency
of the beep.

120 Lesson 13

NEWBIT ROLB * Drop into carry

BCS JUMP1 * On C=1, do dah, do dah
JSR DIT * On C=0, go do the dit
BRA NEXT * .. and go past
JUMP1 JSR DAH * Here's the dah to play
NEXT DECA * Length = Length-1

BNE NEWBIT * Next bit if Length < @
JMP AGAIN * Back for next character

There are a few things missing from this structure. As
shown, there are no spaces obvious between letters or
words. Even if silences were included in the beep routines,
there wouldn’t be any break between streams of beeps. So
silence must be added. And then there’s the question of
what to do when the message is finished. In my example, the
transmission continues right through memory. It’s got to be
made to stop. To achieve a pause, I've selected a yet-to-be-
written subroutine called QUIET, As for the message end,
the greater-than and less-than characters aren’t present in
the Morse Code system. I've decided to use the greater
than sign to indicate “end of message,” and the less-than
sign to mean “‘repeat message.” With thatin mind, I've gota
program for you to load.

Program #22, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears. type L. and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. IF the right-hand side of
the program is not similar to the listing, or if an /0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

List this program screen by screen using the P command.
You’'llfind that I put the message at $3000, the Morse Code
table at $2F00, and the program itself at $2E00. Examine
this program carefully, and see if its compactness makes
sense. Also, check your handwritten Morse table against
mine. All that’s left to write are the dit, dah, and silence
subroutines. Till next time.

I hope that you’ve had good luck creating the program to
take an ASCII message and translate it into a series of
subroutine calls, calls that would, once the final beeping
routines are created, transmit Morse Code.

Just to review, you'll remember that the structure of the
program was set up toread an ASCII message, character by
character. It would then locate an encoded version of the
Morse Code from an in-memory table, and use that
information to produce a pattern of dits and dahs. The
program you've created up to this point should look
something like the one I have for you next.

Program #23, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

Let me take you through my program. I know that without
real person-to-person interaction the things I've done and
the things you've done won’t match. You might feel like the
work you have just finished is somewhat in vain. Not true.
This is really the first program I've left you alone to
structure, and it’s invaluable that you contrast the two.

Last session I told you that some characters which didn’t
exist in the traditional Morse Code set might be ideal for
using as end-of-message markers, to tell your program that
the message was complete, and should either be ended or
repeated. I chose to use the greater-than sign for end of
message, and the less than sign for a continuous repeat of
the message. Recall that the message itself would be stored
beginning at $3000. As for the program, I suggested you
put that at $2E00, leaving plenty of room for the program

Keep in wind that as this
progras is developed,
translating codes and producing
sound is the object. Whether it
is Morse Code or any code isn't
eritical, and whether it's a
beep or an entire musical tume
isn’'t the point. You are
finding out how to wmanipulate
sound and make translations.
Also, rempmber that the final
program is going to make
adjusteents for that Morse Code
punctuation which is six beeps
long; these are exceptions which
don't affect the heart of the
program and its inherent
simplicity.

Name the timing ronsiderations
needed for Morse Code,

The length of the “dit", the
length of the "dah", the length
of silences, and the frequency

of the beep.

* The letter Y is
dah—-dit-dah—dah. What is its

length in binary?
Its length is four, binary 108.

* The letter Y is
dah-dit-dah-dah. What is its
binary beep pattern?

Its beep pattern is 1011,

Learning the 6809 121

Creating a beep
Mhat is the complete encoded

value for Y, pattern
dah-dit-dah-dah?
Beep pattern 1811 plus ome

unused bit (@) plus a length of
108, The result is 16118108,

What is
hexadecimal?

igiie100 in

108110108 is hexadecimal $B4,

If the A accumulator contains
$B4, and you execute ANDA #687,
what is the result?

The result is $04.

If the B accumulator contains
$B4, and you execute ROLB four
times, what is the condition of
the carry flag after each ROLB?

C=1, C=0, C=4, C=l.

#How long is a “dah" with

respect to a "dit"?
Three times as long.

Three things happen when an
interrupt occurs. What are
they?

The microprocessor finishes it
current instruction, saves
important information, and
follows prograssing instructions
in reponse to the interrupt.

& What is the process of acting
on an interrupt called?

Servicing the interrupt.

What is the proper ters for
turning off an interrupt?

Masking the interrupt.

* ghat comdition code bits
deterwine whether interrupts are
masked or enabled?

Bits 4 and 6.

122 Lesson 14

and the Morse Code lookup table. I put the table at
$2F00.

The program itself turns out to be surprisingly simple.
There are three options for producing dits and dahs shown
in my listing. The first option best represents the actual,
expected circumstances — a dah is three times the length
of a dit. Therefore, two separate subroutines, one dit and
one dah, are created for this purpose. The other solutions
might not be immediately obvious.

To understand the second option, consider that the real
world we’re dealing with here is lots slower than the
computer world. In this case, the computer operations
involved in determining the difference between dits and
dahs, and the time required to call the dit subroutine, are
minuscule. In fact, these operations are nearly inaudible in
the course of areal-world beep. A jump to subroutine (JSR)
and a return form subroutine (RTS) take only 13 clock
cycles, and the two likely PUSH/PULL combinations used
to save information before performing the beep subroutine
itself add 28 more cycles. The total clock cycles, 41,
demand under 50 microseconds for completion. Recall
that I suggested a beep frequency of 1,000 Hz. That
frequency means that each pulse that makes up this beep
frequency is 1,000 microseconds — so these additional
jumps and returns add only about 5 percent to the time it
takes to create one single pulse of the beep. So you can see
that in a case where the computeris much faster than areal-
world event, alternative approaches such as this can
simplify the actual machine code you must write.

The third method is a favorite of programmers because it
allows a subroutine to be an all-purpose building block. In
this method, a value is given to the accumulator, a value
which indicates a dit or a dah. The beeping routine then
uses this value to calculate the overall loop length of dit or
dah. In a different and more precise way, this subroutine
performs s similarly efficient function to the previous
one.

More on all of these when the actual beep-creation routines
are assembled.

First, I'd like to turn to the problem of creating the beep
itself. What is a beep? A beep is a tone, or a pitch— arapid,
consistent and regular fluctuation of air molecules. This
isn’t a lesson on acoustics, so I'll make it short. A rapid,
consistent and regular compression and decompression of
the air is perceived as a tone or pitch. A loudspeaker which
is pushed forward and back rapidly, consistently and
regularly will compress and decompress the air in a similar
way. Electrical impulses which alternate between two
voltage levels can create the necessary speaker motion. A
computer program can provide those impulses.

So that reveals the structure of the computer program, and
also getsus — the long way 'round — to the question of time

4

(

H000uS J000KS 1,000,S
)

LDA O A BNE
HUUUTTI
N’

5485/45
ONE LoooP

585 % 85 = 497.25
85 Loors

delays. Alternating between a one and a zero is a simple
task, something you've done alreadv. The task of the
beeping program is to alternate between one and zero at a
predictable rate — in this case, 1.000 Hz. or 1,000
alternations per second.

A simple delay loop in machine language might look like
this {and you can follow along with me in the book):

LDA DLYVAL
Loop DECA
BNE LoOP

The A accumulator contains the delay value. The BNE
instruction loops back until A equals zero. This simple
delay allows a maximum loop of 256 iterations — the
largest 8-bit number the A accumulator can hold.
According to the MC6809E data book, LDA immediate
requires 2 clock cycles to complete, DECA takes 2 clock
cycles, and BNE needs 3 cycles. The goal of the delay is 500
microseconds total. LDA only happens once, so that leaves
about 497 microseconds to go. The DECA/BNE
combination of 5 clock cycles is 5.85 microseconds on the
Color Computer, meaning a total of 85 loops {497.25
microseconds) does the trick. The value for label DELAY,
then, is 85 decimal. We won’t fix this in concrete yet,
though, because certain bits and pieces of the program that
might add extra delay to the process haven’t been written
yet. But it’s working delay information for now.

You might have picked up on my delay of 500
microseconds. If the beep is 1,000 Hz, then a complete
pulse is 1000 microseconds. A complete pulse. That means
one pulse up for air compression, and one pulse down for air
decompression . . . a total of 1,000 microseconds, 500
microseconds for the up pulse, 500 microseconds for the
down pulse.

Now how about the length of the beep? Eventually that’s
going to vary, too, but for the moment, let’s make a dit one-
fifth of a second, and a dah three-fifths of a second. Since
the beep is 1,000 Hz, or 1,000 pulses per second, then one-
fifth of a second is just 200 pulses. So the program begins to
look like this (again, follow me in the book):

LDB 288 * LENGTH
ouTLP LDA 85 * FREQUENCY
INLP1 DECA * DONE YET?

BNE INLP1 * WAIT

LDA 85 * FREQUENCY
INLP2 DECA * DONE YET?

BNE INLPZ * WAIT

DECB * BEEP END?

BNE QUTLP * MORE

There’s still no actual beeping going on here because I
haven’t described how to do it. For this you need to recall
the detailed memory map presented several lessons

Delay values

¥ What command specifically
masks out {turms off) both
interrupts?

ORCC #$50 (binary 81010080).

& What command specifically
enables {turns on) both
interrupts?

ANDCC #$AF (bimary 18181111),

* What is the clock speed of the
Lolor Computer?

.89 MHz (894,886 clock pulses
per second}.

t What does Hz mean?

Hz means Hertz, or cycles
{pulses) per second.

+ What does MHz mean?

Wiz wmeans segadertz, or million
cycles per second.

Why does sound output reguire
timing?

Berause sound is made up of

specific freguencies, and
freguencies are inherently
time—based.

* How long is the shortest BASIC
beep {using SOUND X,1)?

fApproximately 1/14 of a second.

* If a loop contains two load A
immediates, twe store A
extendeds, and ome branch to
make a complete loop, how many
clock cycles are required for
this loop?

2 times 2 cycles, plus 2 times 5
cycles, plus 3 cycles ... a
total of 17 cycles.

* At 094,886 clock cycles per
second, how many loops is this?

894,886 divided by 17, or 32,640
cycles.

Learning the 6809 123

Single-bit sound

*# At 894,995 clock cycles per
second, how many clock cycles
are available to produce a
1,00@-Hz beep?

894,396 divided by 1,008, or
about 895 clock cycles.

¥ If a beep freguency is 1,000
Hz, how long is each "pulse® of
sound.

earlier. You can turn back to that later; for the moment I'll
tell you that “single bit sound,” that is, sound produced by
pulsing on and off one bit in a memory location, is found at
address $FF22. Alternations of one and zero made at bit
one of location $FF22 will be heard on the television
speaker or the cassette output.

So once again you discover that the subroutine becomes
surprisingly simple in its final form. It’s coming up next.
After you’ve gotthe program loaded, take some time to look
at it, then eome back to the tape.

Each pulse is 1/1088th of a
second (1 wmillisecond or 1,000
microseconds).

¥ How long is one Color Computer
clock cycle?
Approximately 1.11746
microseconds.

Program #24, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading

problems, see the Appendix.

* How many clock cycles pass by

in 1,000 microseconds? zE@Q Q0 10@ ORG $ZEQQ
2@11@ *
, ZE@@ 1A 5@ @@1z@ PEGIN ORCC #3550 * TURN OFF BOTH INTERRUPTS
Approximately 895, Q@132 *
PE@Z 86 3@ e14@ LDA #$32 * Q@11 @@1@ SETS DD REGISTER
2E@4 B7 FFa3 @150 sTA $FF23 # ACCESS DATA DIR. REGISTER
2E@7 86 FA e@16@ LDA #eFA * 1111 1@1@ SETS S.E. OUTPUT
2EQ@9 B7 FF&2 ea17@ STA $FF22 # TURN ON SINGLE EIT SOUND
2E@C 86 36 en18@ LDA #4836 * Q@11 @1i@ SETS PD 1/0
2E@E B7 FF23 ea19a 57TA $FF23 * RESTORE 1/0 CONFIGURATION
20202 *
2E11 CE6 &4 @0z1@ EBEEP L.DB s1ee % GET DUTSIDE BEEPWAVE VALUE
2E13 86 28 @@zz@ QUTLP LDA #49 * GET INSIDE EEEPWAVE LENGTH
2E1S 4A @ez3@ INLP1 DECA #* DECREMENT INSIDE DELAY
BE16 26 FD QR4 BNE INLP1 + AND WAIT. TO TOTAL LDOPS
2E18 B6 @2 ea2s@ LDA #SO2 * BET HIBH PART OF BEEPWAVE
PE1R BA FF22 eRz60 ORA $FF2e2 * DR WITH PORT DUTPUT STATUS
ZE1D B7 FF22 eoz7@ STA $FF2& * AND OUTPUT THE RESULT
2EZ@0 86 2B oeza@ LDA #4@ _ . * BET ANOTHER DELAY VALUE
2EE2 4R @ezo@ INLPZ DECA * AND COUNT DOWN THRU DELAY
2E23 26 FD ee3ed ENE INLP2 # WAIT THROUGH TOTAL LOOPS
2EES 86 FD gazie LDA #8FD #* SET LOW PART OF BEEPWAVE
2ER7 B4 FF22 oa3ze ANDA $FF22 * AND WITH CURRENT STATUS
2geA B7 FFez ea33e STA $FFZ2 # AND DUTPUT LOW BEEPWAVE
2E2D S5A ea3sa DECE * DECREMENT NUMBER OF WAVES
2EZE P6 E3 @35 ENE OUTLP * AND GO BACK TILL ALL DONE
2E3@ 39 en36@ RTS * AND BACK TO PROGRAM
2EQ00 ee37e END BEGIN ‘
@0EBQ TOTAL ERRORS
BEEP 2E1
BEGIN 2EQ0@
INLP1 2E1S
INLP2 2E22
QUTLP 2E13

* What is a beep?

A tome; a pitch; a rapid,
consistent and regular
fluctuation of air molecules.

* What electrical device
produces 3 beep?

A loudspeaker.

124 Lesson 14

As it stands now, this program should be setup to provide a
single beep. First, assemble this program in memory, at the
origin shown. Type A/IM/AOQ, and hit ENTER. That’s A/
IM/AO. Now quit the editor/assembler. Type Q and hit
enter.

You'll be in BASIC. To produce that beep, you have to
remember the origin of the program. Type three lines:

3EQQ
3EQ@

3e02
3EQ4
3E@7
3E@9
3E@C
3EQE

3E11
3E14
3E18
3E1A
3E1C
3E1E
3EZQ
322
3E24
3E26
3E28
3EZ2R
3E2C
3E2E
3E3@
3E32
3E34
3E36&
3E38
3E39
3E3B
3E3D
3E3F
3E4@
3E42
3E44
3E46
3E48
3E49
3E4B
3E4D
3E4F
3ES@

19 EXEC&H2EQD
2f FORX=1T028:NEXT
3p GOTO1P

Turn up the television volume, and RUN this program. You

Pure beeps

+ What causes the loudspeaker to
produce a beep?
Electrical impulses which
alternate voltage levels.

should hear a continuous series of beeps. As you listen,

though, you won’t hear that old familiar gargle in the sound.
The interrupts have been turned off; the sound is pure. The

Can a computer program provide
electrical impulses?

routine works. What’s left is to combine the beep routine,

the Morse Code table lookup routine, and all the rest into a

complete, usable program.

We'll be going on to complete the full program next, so it

Yes.
+ Homw are the electrical
impulses represented?

would be a good time to take a break if you wish to review.

After that, load the program.

By binary ones and zeros.

problems, see the Appendix.

Program #25, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading

Two LDR immediates, two STR
extendeds, and BNE wmake a
16-cycle loop; it might LDA 30
and #1 alternately and 578 to an
address to make the speaker
oroduce sound. If 1,008
microseconds is 893 clock
cycles, but the loop is only 16
cycles, what else is needed?

w10 ORG
22118 *
S Qeiz@ BEGIN ORCC
RA130 *
3z Qa14a L.DA
FFE&3 2015e STA
FAa Qa16@ LDA
FFaa @17 STA
36 @182 LDA
FF&3 @152 STA
2o2QR *
3E39 RAz1@d START LDX
3ED4 a2z LDY
RG 2ve3@ ABARIN LDE
3c a4 CMPE
F3 aeesSe BEQ
3E e CMPR
43 agz7@ BEQ@
2@ agzsa SUBE
a5 Qaz9e LDA
2C @300 BEQ
a2 22312 PSHS
1@ Qaa3ze CMPE
o8 @a33a BLS
1A Qa342 CMPE
a4 @a3sa EBEQ
iF 2as6ce CMPE
a5 ae37e BNE
&3 Q038@ EXCEPT ANDR
aa39e ASLA
a2 2a40Q ERA
a7 22410 NORMAL ANDA
24 2042@ GETVAL PULS
20438 NEWBIT ROLR
a4 Q442 BCS
iD 2045Q BSR
az Q460 ERA
15 Q472 JumMPL BSR
20482 NEXT DECR
Fa 20432 BNE
a4 @500 LDB
3B 2051@ LETRLP BSR
eesze DECE
FB 20530 BNE

$3IEQQ
#4502

#8832
$FF23
#$FA
SFFaE
#$36
$FFa3

#MORSE
RTEXT
2 Y+
#$3C
START
#$3E
ouT
#$20
B, X
SPACE
A

%10
EXCEPT
#$1A
EXCEPT
#S1F
NORMAL
»$03

GETVAL
#$07
B

JUuMP1
DIT
NEXT
DAH

NEWBIT
#$04
QUIET

LETRLP

Learning the

*

I EEEEE

* ok & Kk Kk % %k k k %k %k k k k k % k Kk %k k k k k Kk k k ¥k k ¥k ¥ %k ¥ X

A delay.

TURN OFF BOTH INTERRUPTS

Q@11 Qa1@¢ SETS DD REGISTER
ACCESS DATA DIR. REGISTER
1111 1@1@ SETS S.RB. OUTPUT
TURN ON SINGLE EIT SOUND
a@11 @11@ SETS PD I/0
RESTORE 1/0 CONFIGURARTION

POINT TO MORSE CODE TARLE
POINT TO MESSAGE IN MEMORY
GET VALUE FROM THE TEXT
CHECK IF LESS-THAN SIGN

IF "{", THEN REPEAT MESSAGE
CHECK IF GREATER-THAN SIGN
IF "»", RETURN TO BASIC
STRIP OFFSET (TABLE $2@-$SE)
ENCODED MORSE FROM TAELE

IF @@, THEN SEND A SILENCE
SAVE ENCODED MORSE VALUE
CHECK IF PUNCTUATION

IF 8D, GO TO EXCEPTION
CHECK IF A COLON

IF 80, GO TO EXCEPTION
CHECK IF A QUESTION MARK

IF NOT, PROCEED NORMALLY
EXCEPTION USES RIGHT 2 RITS
LEFT SHIFT CREATES NUMEER 6
NOW READY FOR THE ACTION
NDORMAL. USES RIGHT 3 BRITS
RESTORE ENCODED MORSE VALUE
ROTATE BIT TO CARRY FLAG

IF SET, THEN JUMP TO DARH
OTHERWISE SEND A DIT

AND GO 7O THE NEXT BIT

THEN SEND THE DAH

SEE IF DONE WITH ALL BEEPS
IF NOT, THEN GET ANOTHER
OTHERWISE BET TIMING VALUE
AND CALL INTER-LETTER PAUSE
DECREMENT PAUSE COUNTER

AND LOOP BACK TILL DONE

125

Program #25

3ES2 2@ C4 RS54 ERA AGAIN # THEN BD BRACK FOR MORE TEXT
Qe55a =
3ES4 Ce e8 2056@ SPACE LDy #$08 #+ 8 SILENCES FOR A SPACE
3E56 8D 32 @as572 SPCLP BSR QUIET # AND G0 SEND THE SILENCE
3ES8 5A easse DECH % DECREMENT THE SILENCE COUNT
3ES9 26 FB 2592 BNE SPCLP * AND LOOP BACK TILL DONE
3ESB 20 BB 20600 BRA AGRIN * AND GO GET NEXT TEXT
QV61Q »
3ESD 8D a7 @620 DAH BSR BEEP * PERFORM FIRST 1/3 BEEP
3ESF 8D a5 aa630 BSR BEEP * PERFORM SECOND 1/3 BEEP
3E61 8D @3 2e64@ DIT HSR BEEP # PERFORM DIT OR LAST 1/3
3E63 8D 23 20652 BSR QUIET * AND PUT IN A SILENCE
3E6S 39 2ec6@ OUT RTS * BACK TO PROGRAM (OR BRSIC)
QRA670 *
3E6E 34 a6 aae8@ BEEP PSHS AR * SAVE COUNT AND MORSE CODE
3E68 C6 64 @620 LDE #10Q * GET OUTSIDE BEEPWAVE VALUE
3EBAR 86 28 @@7@@ CUTLP L.DA #4Q * BET INSIDE BEEPWAVE LENGTH
3E6C 4R Qa71@ INLPL DECA * DECREMENT INSIDE DELAY
3E6D 26 FD Qa7z@ ENE INLP1 * AND WAIT TO TOTAL LOOPS
3E6F 86 az ra73e L.DA #s0c * GET HIGH PART OF BEEPWAVE
3E71 BR FFae Q742 ORA $FFag * OR WITH PORT QUTRUT STATUS
3E74 R7 FFee "l Jrgaty STA $SFF2Z % AND OUTPUT THE RESULT
3E77 86 =8 aa76@ DA #4540 * BET ANODTHER DELAY VALUE
3E79 4R QAa77@ INLP2 DECA * AND COUNT DOWN THRU DELRY
3E7R 26 FD axa78@ BNE INLPEZ * WRIT THROUGH TOTAL LOOGPS
3E7C 86 FD Q@79@ LDA #$FD * SET LOW PART OF BEEPWAVE
3E7E B4 FFae aasde ANDA sFFae * AND WITH CURRENT STATUS
3E81 B7 FFaa zse8ia 5TA $FFaE # AND OUTPUT LOW BEEPWAVE
3E84 TSR auaza DECE + DECREMENT NUMBER OF WAVES
3EBS 26 E3 oe83e ENE ouTLp * AND GO BACK TILL ALL DONE
3EB7 35 Qa6 Qassd PULS A B * RESTORE COUNTER AND MORSE
3E89 39 aa85a RTS * AND BACK TO PROGRAM
Bas6ca *
3EBA 34 @6 @@87@ QUIET PSHS A B *+ SAVE COUNTER AND MORSE
3E8BC C6 &4 aasse LDE #1000 * BGET OQUTSIDE DELAY VALUE
3EBE 86 64 aeasa QLP1 LDA #1@@ * BET INSIDE DELAY VALUE
3ED@ 4R 2@gga QLP: DECA #* COUNT DOWN THRU INNER LOOP
3E391 &6 FD a@gia ENE QLpPe #* AND WRIT FDR THE COUNT
3E93 SR easza DECE * COUNT DOWN THRU DOUTER LOGP
3ES4 26 Fa de33e ENE oLp1 * AND WAIT FOR THE COUNT
3E96 35 a6 aa24@ PULS A, B + RESTORE COUNTER AND MORSE
3E98 39 ae95a RTS * BACK TO MAIN PROGRAM
@96 *
3E99 @R 20972 MDORSE FCEB Q0 * SPACE
3E9A aa Q@980 FCB @0 * ! = SPACE
3E9H 4K aa99@ FCEB $4ER # " o (-..-0) (Q1OQ1@ 11) wx
3E9C @@ 2120 FCEH £QQ * # = SPACE
3E9D @a eireia FCH $a@ * ¢ = SPACE
3E9E e aieze FCB 2 * % = BPACE
3E9F @ aLa3e FCE $02 * & = SPACE
3ERD 7R Q1040 FCE 7B #* 1 {,—--——.) (011112 11) #*%
3EAL u7 aiasa FCR $H7 # ¢ (—.——.=) (1@11@1 11) #*»
3EPZ B7 a1 6@ FCB $B7 *) (—,==.~) (101181 11) *=
3EA3 e aia7a FCE Q2 * * = SPACE
3ER4 aa ai1a8@ FCB E 10 % + = SPACE
3ERS CF a1092 FCE *CF * ., {==..-=) (11@@11 11) %=
3ER6 a7 Q110 FCE +£87 * - (~,...—) (10@QA1 11) =%
3ER7 57 2111@ FCR 57 #* . {e—e=.=) (QIQ1Q1 11) %%
3ERB 93 al1ize FCB $93 * / {-..=..) (1001002 11) **
3ER9 FD 2113@ FCE $FD * @ (-~) (11111 1@1)
3ERR 7D @1140 FCE $7D * 1 {(,~-—-—) (@111i1 l1@1)
3ERP 3D 2115 FCB 43D * 2 (,.——=) (@@11l 101)
3ERC iD @116@ FCH $1D *# 3 (,..—=) (Q@@11 1@1)
3ERD @D ai117@ FCE $@D * 4 (,...~) (QOQ@1 1@1)
3EAE as @1 18@ FCEB %25 * 5 (La...) (0O0GQ 101)
3EAF as @a119@ FCE $85 * 6 (—....) (10022 101)
3EE@ C3 aiz0e FCE $C5 * 7 {—...) {(11Q@@ 1@1)
3EB1 E3 @121 FCB $ES * 8 (———..) (11100 101
3ER2 FS 21220 FCR $FS * 9 (————.) (11110 1@1)
3EE3 E3 a123e FCE $E3 * 2 (———...) (111000 11) *x
3EEB4 e @124 FCE soe #* 3 = SPACE
3ERS ('L a1235e FCE *ae * { = SPACE
3EE6 @a @1260 FCB k170" # = = SPACE
3EE7 e ai27e FCB 2 * > = SPACE
3EBS 33 aiz8e FCE £33 * ? (Lo——..) (BR2110@ 11) *x
3EE9 0 @129 FCE E 1] * @ = SPACE
3ERA 41 @1 30@ FCEB $41 * A (.~-) (@1 @od @al)
3EBR 84 @131 FCe $84 * B (-...) (1022 @ 12@)
3EBC A4 @13ze FCH A4 * L (-.—-.) (1010 2 1o@)
3EBD a3 @133@ FCER $83 * D (~-..) (100 @@ @11)
‘3EBE @1 @134 FCR $21 * E (.) (@ eooe 2@1)
3EBF 24 @135 FCE 24 * F (,.-.) (@@1Q 2 12
3EC@ c3 1360 FCB $C3 * G (——.) (li@ @@ @11)

126 Lesson 14

3EC1 24 a137@ FCB $Q4H *
3eC2 a2 a138e FCB sz *
3EC3 74 2139 FCE $74 #
3EC4 A3 21400 FCB $A3 *
3ECS b4 Q14ia FCE $h4 *
3ECE ce Ql42@ FCB $Ce *
3ECT a2 Q143@ FCB $82 *
3ECS E3 Q144 FCB $E3 *
3EC9 64 21450 FCB $64 *
3ECR D4 2146@ FCH D4 *
3ECB 43 2147@ FCB $43 *
3ECC a3 Q1480 FCB $03 *
3ECD 81 21495@ FCB $81 *
3ECE 23 a150@ FCB $23 *
3ECF 14 a151@ FCB $14 *
3ED@ 63 a15z@ FCB 63 *
3ED! 94 21530 FCB 394 *
3ED2 B4 Q154 FCB $B4 *
3ED3 C4 B155a FCE $C4 *
@136@2 % NOTE:
@157@ % THE ITEME MARKED WITH A
21580 * PROCESSED
21390 *
3ED4 59 Q1600 TEXT FCC
3EED 4D eliel@ FCC
3FeB 42 Q1620 FCC
Q1632 %
3EQQ 2164@ END BEGIN
@QQ2@a TOTAL ERRORS
AGAIN 3E18
BEEP 3E66
BEGIN 3E@@
DAH 3ESD
DIT 3E61
EXCEPT 3E36
BGETVAL 3E3D
INLPL 3E&C
INLP2 3E79
JumMp1 3E46
LETRLP 3E4D
MORSE 3E99
NEWRIT J3E3F
NEXT 3E48
NORMAL 3E3B
ouT 3E6S
QUTLP 3E6R
GLP1 3EBE
GLPZ 3ESR
QUIET 3EB8A
SPACE 3ES4
SPCLP 3ES6
START 3E11
TEXT 3ED4

By this point the program should be no surprise. Display it
using the P command. You'll notice little new; the program
has heen structured precisely along the lines of the original
description. There are just two additions: a comparison is
made to find out if the ASCIH value in the message
represents a greater-than sign or a less-than sign. On
greater than, the transmission is completed, the program is
ended and returned to BASIC; on less than, the message is
repeated.

The other addition to the program is the comparison for
$20, the ASCII value for a space. There is no space in
Morse Code, but for purposes of clarity in transmission, a
little extra time is traditionally inserted between words. If a
space is found in the ASCII text, then, the QUIET routine

Learning the

NAXECOCANIDUVOZIrXGm~I

Program #25

{aua.) (QOQQ @ 100)
(..) (@@ Q@ Q1)
{(o——=) (@111 @ 10@)
(-.=) (101 @@ @11
(.=..) (102 @ 120
(-—=) (11 @@ 21Q)
(~=.) (1@ @or @1@)
(-~=) (111 @& @11)
{.--.) (@112 @ 10@)
(-=.=) (11@1 @ 1@@)
(.—.) (D10 22 @11)
(.o.) (QQ2 @ @11)
(=) (1 Q22Q @@l)
(..-) (@@1 Q@ @11
(-..=) (2221 @ 100)
(.==) (@11 @@ @11)
(=..=) (1e@i @ 1@@)
(~.—=) (1@i1 @ 1@@)
(-—..) (11@@ @ 100)

DOUBLE ASTERISK (#%) ARE

BY THE EXCEPTION BEEPING ROUTINE.

/Y0OU ARE LISTENING TO THE /
/MICRO LANGUAGE LAE, PRESENTED
/BY GREEN MOUNTRIN MICRO.)/

If the A accumulator contains

a delay value, what is the
simplest possible gelay
orocedure?

Decrement A accumulator, and
branch on not egual back to
decrement A accusulator. When R
reaches zero, the loop ends.

* How long is this delay loop
{excluding the original lcad A
accusulator)?

2 cycles (DECA)
(BNE) is § cycles,
times 1. 11746 or 5.5873
microseconds. (The less precise
value of 5 times 1.15 pives 5.75
microseconds) .

plus 3 cycles
that is 5

127

EDTASM switches

* How many loops would be
required for a delay of 500
microseconds?

308 wmicroseconds divided by
5.5873, or approximately 89 (not
including the resainder of the
progras; 85 is used as a test
value in the example).

tW¥hy is a delay of 500
microsecords used instead of
1, 89 ‘microsecords?

Because the sound: alternates
between 1 and @, half the time
on and half the time off. 0a
microseconds delay is needed for
each half.

*# What are the Color Computer
port addresses?

SFFBQ, $FFOC, SFF20 and $FF22.

* At port $FF22, what
purpose of bit one?

is the

1t is used for sound output.
* What action causes sound?

Alternations of ome and zero
made at bit one of port $FF22.

Where is the sound heard?

On the television speaker or
through the cassette output.

* What is the ters for “setting
up” a computer device?

Configuring.

% What PIR address configures
port $FF22?

fddress $FFZ23.
* What does PIA mean?

Peripheral Interface Adapter.

128 Lesson 14

is called to insert a slight pause in the transmission.

Interestingly, this program represents quite closely the
actual human process from which is was derived. A person
reads a message, recalls the code, and transmits it with a
series of accurate, trained muscular movements.
Programming is not always such a parallel to real life; enjoy
it this time.

I'd like to take the remaining time to review editor/
assembler assembly commands. I haven’t presented these
before, but you have undoubtedly come across them as you
worked with EDTASM+ while completing this program.

EDTASM’s command to assemble your mnemonics into
machine language is “A”. The “A” command has a number
of options called “switches”. If you enter simply the letter
“A”, the assembler will display a scrolling assembled
listing, will provide a table of all labels you've used in the
source code, note any errors you've generated, and —
assuming you have a tape recorder connected and ready —
will prepare a cassette containing the final binary object
code. The object code tape will be called “NONAME”, and
will load under BASIC’s CLOADM command.

There are many other options that this one. The format of
the “A” command is A, space, filename, switch. For
example, to assemble and save the resulting machine-
language program to tape under the name “DISPLAY”,
you would type A DISPLAY <ENTER>.

The switches are two-letter command options separated
by slashes. These are:

/WE Wait for errors. The display stops if you
have made an error in an opcode, an operand,
a range, a typo, etc. The assembler will
display a descriptive error message.
No object code tape is created. I use this
switch until 1 have eliminated all errors
picked up by the assembler
No listing is displayed. Especially during
correction of minor errors, or when you only
want to see a list of labels, you can turn
off the long listing.
No symbol table is displayed. The symbol
table is the proper name for a list of all
the labels used in the program, together with
the addresses at which they appear.
Line printer command. Everything that is
displayed on screen is also sent to the
Color Computer's serial printer
In-memory assembly. This is an excellent
debugging tool. The program is not only
assembled into binary code, it is alse placed
directly in memory, ready to run.
/A0 Absolute origin. If you do an in-memory
assembly, vou can let the machine assemble
the program at its predetermined locatien,

/NO

/NL

/NS

/IM

SWE. N

/NL

/N

/AC

oRG $1234
LDA Bp o
TER X,P

or at the memory location you specified in
your ORG statement. Absolute origin uses
your ORG.

/M0 Manual origin. This permits you to move the
source code, tables, and so forth, that
EDTASM needs to work with, so that your own
program doesn't conflict with it.

/S8S This is the short screen option. Finding
your way through an assembling program with
the Color Computer's 32-character screen
can be messy. The short screen places the
assembled hex address, opcodes and operand
on a line by themselves, with the mnemonics
out of the way on the next line.

For details on all these commands, of course, read pages 13
through 16 of your EDTASM+ manual. For the moment, I
want you to try the In-Memory assembly option, at your
own origin, for the Morse Code program and for as many
other programs as you would like to try up to this point.
Next time, a new topic.

EDTASM switches

+ Nawe the timing considerations
necessary to produce a beep.

The length of the beep and the
freouency of the beep.

* The following guestions refer
to EDTASM+ assembly (A)
commands.

* What does R/NO produce?

fn assembled listing and symbol
table.

What does A produce?

An assembled listing, symbol
table, and object code sent to
the cassette.

*# What does A/NL/NS/NO produce?

Only a report of errors at the
end of the assembly. No listing
appears on the screen.

What does A/NL/ND oroduce?
A listing of the symbol table.
* What is the symbol table?

A listing of all labels used in
a program, together with the
addresses at which they appear.

¥ What does A/ND/LP produce?

A complete assewbled listing
send to the printer,

+ What does R/IN/AD produce?

A screen listing of the
assembled program and symbol
table, as well as an object code
piaced in memory at the origin
specified in the source code.

¥ What does A/S5S produce?

R screen listing in ‘“short
screen” format, where lines are
broken up for easier reading; a
symbol table and object code to
cassette are also produced,

Learning the 6809 129

What does A/WE produce?

A listing, symbol table, and
object code; it also stops at
any line in which an error
occurs.

What does A mean?

fiscemble.

¥ What is assewbly?

The translation of source

{mnemonic) code into binary
{object) code,

130 Lesson 14

Hands-on programming takes a back seat for this lesson as
the topic once again returns to addressing modes. For this
session, you’ll want to have your MC6809E data booklet
out again. Turn to pages 15 through 17. On pages 15
through 17, where you’'ve previously learned about
inherent, immediate, extended, direct, relative, and
indexed addressing, you’ll also find information about
additional applications of those modes.

These remaining addressing modes are called indirect
addressing. “Indirect” is an excellent description of this
concept, because the operand is not the data (as in
immediate addressing), nor is the operand the address of
the data (as in extended addressing). No, in the case of
indirect addressing, the operand is an address which points
to an address where the data can be found. Once again. The
operand is an address. That address points to another
address. In turn, that address points to the data.

This is easier to understand through example than
description. In fact, I've already introduced indirect
addressing, but not by name. Recall how I described the
power-up of the 6809 microprocessor. When the power is
turned on, I said, the processor immediately identifies
addresses $FFFE and $FFFF. It concatenates the 8-bit data
found at these addresses, producing a 16-bit number. That
16-bit number becomes the address of the first instruction
the processor is to follow. That’s indirect addressing.

I know this method, properly called “indexed indirect”,
sounds like a clumsy and roundabout way of getting
information. It's not clumsy, but it is roundabout, and that
roundaboutness is its precise advantage. Let’s say you've
got a super-high-speed action game in the writing, and you
need to make moves based on keyboard input. We'll talk
about keyboard input itself later, but imagine for the
moment that the numbers 0 to 9 are crucial in your game.
Say each number causes an entirely different game action,
such as shooting balls or using flippers in some sort of
arcade pinball. You could, of course, check the value of
each number, and if it fits, jump off to a routine. It might

Learning the

Gne of the wmost iwportant
gifferences among the dozen or
50 pogdlar sicroprocessors is
their respective architectures.
The 6BI's architecture is
created to facilitate finding
data, and its myriad addressing
modes are key tu finding data.
indexed addressing i1s pari of
your programming library
already; 1indirect addressing is

coming up, together with
information on handling and
manipulating high-resolution
graphics.

+ Where does the 6809's
instruction decoder get its
instructions?

From memcry.
+ What wewory locations does the
processar use when the power is

turned on?

It uses $FFFE and $FFFF when the
power is turned on.

% What does the processor get
from semory location $FFFE?

The wost significant byte of a
{6-bit number.

% What does the processor pet
from memory location $FFFF?

The ieast significant byte of a
16-bi% number.

131

Indexed indirect

What does the processor do
with the two bytes from $FFFE
and $FFFF?

It concatenates thes.

result of
from

* What is the
concatenating the bytes
$FFFE and $FFFF?

A 16~-bit number.
16-bit number

* What does the
represent?

The address of the first
instruction the processor will
execute,

¥ The processor cbtains the two
bytes at $FFFE and S$FFFF,
concatenates them, and uses the
16-0it vresult as an address.
What addressing mode is this®

Indirect addressing.
mode

* What addressing is LK

612347

iwmediate addressing,

What addressing mode is LDX
$12347

Extended addressing.

+ What addressing wmode 15 LDX

3123 ?
indirect addressing.
the

* In immediate addressing

mode as represented by LDX
#$1234, where is the data?
Inmediately following the
opcode, that is, the data is
$1234.

¥ In the extended addressing
mode as represenied by LDX
%1234, where is the data?

At address $1234 and %1235,
132 Lesson 15

look something like this (follow me in the book here):

CMPA $3p * 2 bytes
BNE NEXTI * 2 bytes
JMP FLIP * 3 bytes ‘
NEXTL CMPA $31 o\
BNE NEXT2 s 4
NP FLAP .
NEXT2 CMPA $32 =
BNE NEXT3 N
JNP FLOP =z

... and so on. This kind of programming would do the job,
and naturally it would be quite fast due to the simple fact of
its being written in machine language. But it grabs lots of
memory, and, if timing is critical, it is an uneven process;
that is, getting to the last possible choice in the list takes
more machine time than getting to the first choice.

There’s an entirely different and very powerful technique
available withindexed indirect. Consider this. You canload
an index register X or Y with the zeroeth element of a table
of subroutine addresses, subtract an ASCII offset from
your accumulator, double A, and simply jump to the
address indexed indirectly by X plus A. Look in the
book:

LDX TABLE * Addresses
SUBA $3p * Strip ASCII
ROLA * Double A

JHP A X * Indexed indirect

TABLE FCB $1234 * Subroutine #P
FCB $1366 * Subroutine #l1
FCB $1A9C * Subroutine #2
FCB $20EF * etc......

The A accumulator is rotated left (that is, doubled) because
it takes two bytes to create an address. The indexing
process needs to skip every two bytes. Observe that the
original compare-branch-or-jump routine takes 70 bytes
for ten choices. This indexed indirect routine has the
advantage of being more regular and much faster, yet it
takes only 29 bytes. For long or fast programs, the savings
in time and memory can be significant, and for timed
programs, the regularity can be meaningful. Let’s put it to
work.

The program will be the Game of Life, a nifty set of rules by
which theoretical populations of cells are born, live, and
die. The rules are simple. First, this mythical population
lives in a regular, two-dimensional grid. On this grid, which
can be imagined simply as intersecting horizontal and
vertical lines, any given cell position is surrounded by §
other cell positions. Three “live” cells will give birth in any
cell they surround; two or three surrounding cells will keep
that cell alive. If the neighborhood population grows over
three cells, or falls under two cells, the cell dies.

Vs

i

A
PAS

% 5W% _

X=$lz34

B
° LDA

Do

£? %

B4
(o]

@

=P

B, X

« @@ G2

BX = $i27E

(BX)+ (s,‘x:)

\%5 ~ (%
(?%)O & EE

Bx) +(Brx+)) =’$%4»\

e
¥ ~Emd ~*

These simple rules can cause an incredible number of
predictable population patterns to arise. Civilizations grow
and shrink, rise and fall. Some stabilize in tiny colonies, or
rise to great empires. On a video screen, these changes can
transform a random population into an astoundngly regular
ebb and flow. It becomes hypnotic.

You don't play the Game of Life. Once you have created an
initial population, it plays itself until the populations have
stabilized in life or death.

And, with such a simple set of rules, it becomes a perfect
computer application. The set of rules by which any
applicaton is completed is called an algorithm. Let me
reiterate the algorithm for the Game of Life.

1. Where three cells surround an empty
position, cell birth takes place.

2. Where two or three cells surround a live
cell, life goes on.

3. When the surrounding population drops
below two, a cell dies.

4. When the surrounding population rises
above three, a cell dies.

Idfirst like you to see this in slow motion. I've got a BASIC
program for you.

Problem #26, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1@ PMODE®@:PCLEARI :DIMA(ES, 33)
20 FORX=1024TD1535

3@ POKEX, 127+RND(17) sNEXT

4@ FORX=1TD62:FORY=1TO3@

5@ IFPOINT (X, Y) (> @THENG@ELSE 140

6@ A(X—1,Y-1)=A(X-1,Y=1)+1

7@ A{X, Y=1)=A(X, Y-1)+1

80 A(X+1,Y-1)=A(X+1,Y-1)+1

90 AIX-1,Y)=A(X-1,Y)+1

100 A(X+1,Y)=A(X+1,Y)+1

11@ A(X—1, Y+1)=A(X—-1,Y+1)+1

12@ A(X, Y+1)=A(X, Y+1)+1

13@ AIX+1, Y+1)=A(X+1, Y+1)+1

14@ NEXT:NEXT

15@ FORX=@TD63:FORY=@TO31

16@ IFA(X,Y) (ETHENRESET (X, Y) :GOTO19@
17@ IFA(X,Y)=3THENSET(X,Y, 1) :60TO13@
18@ IFA(X, Y)Y 3THENRESET (X, Y)

19@ NEXT:NEXT

200 FORX=@TD6S:FORY=0T0D33

Basic Life

In the indirect addressing
wode a5 represented by LDX
{($1234), where is the data?

At the address determined by
concatenating the bytes found at
$1234 and $1235.

¥ [f addresses %1234 and %1235
contain A and 00
respectively, and if addresses

-$R30Q and $ABR1 contain $7F and

$F8 respectively, whai does the
¥ register contain after LDY
4412347

i contains 31234,

* [addresses 1234 and %1235
contain A0 and 00
respectively, and ir addresses
SA0RQ and $ABRI contain $7F and
4@ respectively, wnat does the
¥ register contain after LDX
$i2347

X contains $R0QA,

% If addresses $1234 and $1235
contain $4@ and 00
resoectively, and if addresses
#0008 and $ABAL contain $7F and
$& respectively, what does the

£ register contain after LDX
{$1234) 7

% contains $7FFQ.

* What specific addressing mode
is LDX $1234”

Extended addressing.

*+ What specific addressing mode
is LDX ($1234)?

Extended indirect addressing.

* what specific addressing mode
is LDR ,¥?

lero-offset indexed.

* What specific addressing mode
is LDA {17
indirect

Tero~offset indexed

addressing.

212 A(X,Y)=A:NEXT:NEXT:G0T0O40@
-
Learning the 6809 133

Checking the neighbors

¥ There are basic rules to the
Game of Life, What iz the
general term for a set of
rules?

fn algorithm.

¥ There are four parts to the
Game of Life algorithm, each
involving a cell positionona
grid. How many potential
neighbors are there in a
regular, two-dimensional square
grid?

Eight neighbors.

What do three neighbors
produce in a dormant cell?

A cell "birth®.

What do two or three neighbors
produce in a live cell?

No change.

¥ dhat do less than two
neighbars produce?

A cell “death”.

+ What do more than three
neighbors produce?

A cell "death”.

* What is the general term for a
set of rules?

fn algorithm.
* dhat does VDG mean?
Video Display Generator.

*The VDB performs what
functicons?

The display of alphanumeric
characters, and the display of
several resolutions of color and
monochrome graphics.

What does SAM mean?

Synchronous Address
Multiplexer.

134 Lesson 15

RUN this program. As you watch, a random population is
generated in low-resolution graphics. This is the starting
population, the garden of Eden, if you will. Once the
population has been established, the Game of Life begins.
As you watch, I'll tell you that the Game of Life is now a
traditional computer problem, originally invented and
proposed by British mathematician John Conway. His
proposal delighted computer people at the time, and
continues to be fascinating as more detailed color screens
and more capable computers are developed.

The populations you are watching develop slowly, since
BASIC must make a large number of simple comparisons
and calculations for which it is ill-suited. Doing such
calculations by hand can take hours per generation. Yet the
simple-mindedness of machine language finds this a fertile
area.

The process of moving from generation to generation is
made up of one overall task: check the “neighborhood” of
cells, so to speak, and than maintain the status quo, give
birth to cells, or kill cells. There are many ways of dealing
with that task, however. You might check by neighborhood,
or by cell, or look for the presence of any population in an
area. Statistically, the Game of Life more often results in a
lesser number of live cells — at least after the Garden of
Eden has been created and the generational growth has
begun.

My old friend and teacher Phil approached the algorithm
from this point of view. It complicated the programming
slightly, but sped along the real time required to move from
generation to generation. That’s the approach 'm going to
use for this example, so I'd like you to keep it in mind. As
you progress with 6809 assembly language, you might like
to give the Game of Life a try using other approaches.

To begin with the Game of Life on the Color Computer, you
have to know how to establish the degree of screen
resolution you wish to use, and how that mode is
manipulated. This is especially important when using the
6847 video display generator because each graphics mode
has a different number of colors and a different manner of
dealing with how the bits in a memory byte are reflected on
the screen. In your notebook, find the MC6847 video
display generator data sheet, and turn to page 19.

These modes should already be familiar to you from an
earlier lesson, but you should review them now. Also, you'll
want to look in the MC6883 data sheet to Appendix A on
pages 20 through 22. Because of the way the SAM and the
VDG are connected, these special modes are also available.
Take time now to read the information on graphic display
modes.

GENERATION

T TE .
L 2

Turn to the MC6847 video display generator (VDG) data book-
let and read the information on page 19. Also. open the
MC6883 synchronous address multiplexer (SAM) data booklet
and read Appendix A, pages 20 through 22. Return to the tape
when you have completed the reading.

I'd like to select detailed, regular and square picture
elements. The highest resolution mode offers individual
pixels, but I'd also like color so that different generations
and empty cells are shown in different colors — empty cells
in black, perhaps, births in yellow and established cells in
blue. The mode labeled CG3 offers a 2x2 pixel in four
colors. I'll use it.

Now, rules in hand and video mode selected, I can structure
the neighborhood counting process. To create this screen,
3072 bytes are required to produce 12,288 screen points,
at a resolution of 128 by 96. In the screen memory,
combinations of bit pairs determine the color, and four bit
pairs fill a byte.

By now, you should be able to establish mode CG3 and
select the screen memory using the upper memory address
and the SAM registers. To accomplish this, remember to
refer to both the MC6847 VDG data booklet and the
memory map in the MC6883 SAM data booklet. I won’t
take time for that here; you’ll be able to double-check your
results against the program listing in the next lesson.

Among the other things to establish is the color set — that

is, which set of four possible colors to display. The sets are
green, yellow, blue and red for set #0; buff, cyan, magenta,
and orange make up set #1. The choice for color set is
specified in the Color Computer memory map as bit 3 of
output port address $FF22.

Some arbitrary decisions must be made. I've selected
addresses $0000 through $0BFF for the video display; that
address has to be presented to the SAM. Recall that the
SAM contains write-only registers which are set or reset to
produce the 7-bit upper portion of the display address.
Review the MC6883 data sheet if you need to refresh that
information.

And finally, interrupts must be turned off to speed the
execution of the program. Again, the details of all these
setup routines will be shown in the final program in the next
lesson; you should attempt to do them in the meantime.

Let me give you a summary now of the pre-program
setup:

1. Interrupts must be disabled.

High resolution and Life

On the Color Computer, there
are two considerations necessary
to establish VD6 wodes and
colors. What are they®

Part SFFE2 and the SAM video
registers.

* What bit of port $FFID selects
the color set?

Bit 3.

* What are the 58M mewory
addresses called?

Write-only registers.

¥ Name the addresses of the 5AM
weite-only registers that
control the video display
of fset,

Addresses $FFCH to $FFD3,

*What is the video display
offset address the address of”?

The upper-left-most picturs
element shown on the video

display screen.

¥ 4hat is the term for ‘“picture
element”

Pixel.

¥ In the most detailed wmode,
what is the pixel size of the
video screen (pixels wide by

pixels high)?

<36 pixels wide by 192 pixels
high.

* What is the pixel size in mode
C63 {color graphics 3)?

2 pikels by 2 pixels.

What is the size of the screen
in mode C62 (width by height)?

128 wide by 96 high.

Lcarnhu;the:ésey(:)s> 135

Scratchpad memory

* How many different points are
displayed on the screen in wmode
£53?

12,288 points.

* How many bytes are reguired
for the screen in wode CG3?

3,072 bytes.

* How many colors are available
in mode C637?

Four colors,

* What are the four colors of
VOE color set #@?

Green, yellow, blue and red.

+ what are the four colors of
VDG color set #1?

Buff, cyan, magenta and orange.
% What bit of what port address
selects the color set to be
dispiayed?

Bit 3 of port $FF2R2,

¥ In the Game of Life algorithm,
what causes cell birth in a
dormant celi”

Three immediate wneichbors.

+ In the Game of Life algorithm,
ahat causes cell death?

€ither less than two or more
than three imsediate neighbors.

* In the Game of Life algorithm,
" what causes no change te a

living cell?

Either two or three immediate
neighbors.

* What is another name for a
work area of memary?

R scratchpad.

136 Lesson 15

2. One of two possible color sets must be
selected. This program will use set #1 for
greatest definition.

3. The display screen memory must be
defined. Screen memory will run 3,072 bytes
from $0000 to $OBFF.

4. The color graphics modes must be
established. Color Graphics 3 will be used,
binary mode 100, to achieve a screen
resolution of 12,288 points in four colors.

The final setup information is actually the Garden of Eden
population itself. Because there’s memory garhage and
other information present upon powering up into BASIC or
EDTASM-+, you'll be able to use that residual material as
the Garden of Eden. Creation of random numbers is a
subject for later in this course; so until then, Life begins in
the garbage pile of memory.

T'll be speaking often about scratchpad memory. Also
called a work area, scratchpad memory acts as temporary
storage for calculated information on the way to a final
result. For example, long division on a microprocessor is a
fairly complicated task, and there aren’t encugh registers
inside the 6809 processor to complete it. All the temporary
quotients, remainders, and so forth, are stored in a working
arithmetic area. When you call for the answer to a
complicated mathematical formula in BASIC, the working
area required can be thirty or forty bytes, in addition to
temporary stack storage of the results from within each and
every set of parentheses.

In this version of the Game of Life, 3072 bytes of display
memory represent 12,288 screen display points. In other
words, each screen display point requires two bits of a byte.
These quarter bytes provide for economical use of
memory, but are more time-consuming to handle in a
program because they have to be shifted left or right, or
masked, or whatever, to retrieve their information. Point
#0 on the screenis byte zero, bits 7 and 6; point #2 is byte
zero, bits 5 and 4; point #12287 on the screen is byte
#3071, bits 1 and 0. The relationship isn’t difficult, but
program handling can be.

Exclusively for reasons of speed, then, I chose to setup a
scratchpad memory 12,288 bytes long — one byte for each
point on the screen. Although it’s wasteful of memory, it’s
very speedy because my ‘“neighbor” information is
immediately accessible in raw form. Since there are from 0
to 8 neighbors for every point, [could have used nybbles,
butI chose to use the whole byte to avoid the time required
for rotating and masking.

I've also made an arbitrary decision to choose $1000 to
$3FFF for these 12,288 bytes of scratchpad memory.
That’s hex $3000 bytes. So the screen display runs from
$0000 to $OBFF and the scratchpad runs from $1000 to

EEETE
e
SO L

$3FFF. All the memory that’s left for the program itself is
$0CO00 to $OFFF. I'll put the program at $0C80.

So I'd like you to begin by writing a program beginning at
$0C80 to perform the setup, and to clear scratchpad
memory to zero. Once again, the setup is in four steps:
disable interrupts, select color set #1, point display
memory to begin at $0000, and choose color graphics mode
3. Scratchpad memory runs from $1000 to $3FFF and must
be filled with zeroes.

Before I leave you with this project, I'd like to suggest that
although there is a simple way to fill memory, there is a
faster but less obvious one. The simple way is to load an
accumulator with the value needed to fill memory, to point
the X or Y register to the start of that memory, and to store-
and-increment your way through.

The less obvious method is to use the 6809’s fast and
powerful stack instructions. Re-examine the stack
instructions in the MC6809E data book, including their
opcodes and speed, and — without looking ahead to my
solution in the next lesson — work out both ways of filling
up that scratchpad memory.

Filling memory

*+ In display mode CG3, how many
display positions are
represented by one byie?

Four display positions are
represented by one byte.

% How many bits of a byte are
necessary for each display

position in mode [B3?

Two bits are necessary for each
display position.

¥ Why two bits?

Berause sode CG3 displays four
coicrs, and all combinations of
two bits are necessary to

display four colors.

* What addressing mode is LDX
#%12347

Immediate addressing.

* What addressing wmode is LDX
$1234?

Exterded addressing,

¥ What addressing mode is LDX
{$1234) 7

Indirect addressing.

* What specific addressing mode
is LDX $12347

Extended addressing.

% What specific addressing wmode
is LDX ($1234)?

Extended indirect addressing.

+ What specific addressing mode
is LDA ,Y?

lero~offset indexed.

* What specific addressing mode
is LR ()7

lero-offspt indexed indirect
addressing.

Learning the 6809 137

138 Lesson 15

MDD 7,04738¢7 7 7 7
A [MZ]V]e)

NTELLPYS

Although we're still pretty far from its actual use in this
program, I want to remind you that the current topic is
indexed indirect addressing. Indexed indirect is the mode
where the operand is the address of amemory location, and
the contents of the pair of sequential 8-bit memory
locations make up an address whichis the eventu\al location
of the data. For example, say register X points to memory
location $3000. Say that memory location $3000 contains
byte $AB and memory location $3001 contains byte $99.
Now say finally that memory location $AB99 contains byte
$FF. Load A accumulator zero-offset indexed indirect to X
would result in A containing $FF. I've got some illustrations
of that concept in the book, and the program we’re writing
should help understand the usefulness of the technique.

By this session you should have prepared the setup
information and the scratchpad memory clearing. Your
setup should look something like mine. To disable
interrupts, you would . . .

ORCC #8350
... which sets bits 4 and 6 of the condition code register.

To choose colorset #1, you need to set bit 3 of port address
$FF22, Furthermore, bits 4, 5 and 6 are the graphics mode
selection bits, and bit 7 is the alphanumeric/graphic
selector. If you hadn’t taken a look at all these control bits,
then now’s the time. Turn to page 15 of your MC6883 data
booklet (page 15 of the SAM data booklet).

There are 16 different display modes presented on this
page, all but one available in two color sets. That gives you
31 choices. This wide selection is only available in
computers where the 6847 video display generator and the
6883 SAM are used together; both are smart circuits, and
so they interact in complex and versatile ways. The mode
I've selected for the Game of Life is full color graphics 3. If
you follow down on the chart, you'll see full graphics 3C,
and the required bit conditions. The detailed memory map
shows these bits; I'll remind you that the MC6847 modes

Learning the

Indirect addressing 15 coming
along. There's still coder
graphics mode details to ceal
with, and some :Geas in cuickly
moving data from piace to place.
Clock cycles will come into plav
in the evaluation of speed --
since we all want graphics ang
speed to go hang i1n hand, There
are alsa reviews of former
inforpation to cover, 3o that
thiz propramming gdoesn't move
a.ong foo fast.

¥ bihat adoressing wode 15 o
212347

cxtended addressing.

¥ What acdressing wode 15 DX

Indirect addressing.

+ What specific addressing mode
is LDX $1234?

cxtended addressing.

% What specific addressing sode
15 LY (812347

Extended indirect addressing.

w 139

Video modes

* What specific addressing mode
is LDA ,¥?

lero~offset indexed.

* What specific addressing wode
is LDA (,V)?

lerc—offset indexed indirect
addressing,

* What 15 necessary o choose
VOB color set #1 on the Color
Computer?

Setting bit 3 of port address
$FF22 chooses color set ¥,

* Which zits of oort $FFEZ
select the graphics moges?

Bite 4, 3 am 6 seiect tne
grashios modes,

*anich it of oort SFF2Z
sgigete ozbween alphanumerics
2o Fragaics?

Bit 7 of port $FFIE selects
aipharumerics o graphics,

bohame wy three cats.
Jica, Mehitabel anc Beulan,

¢ Tngog are Basic rules to the
came of Life. What iz the
pereral ters T 3 st of

risaes?
A algorithe.

There are four oparts to the
Game of Life algorithm, each
irwolving a cell position om &
grid. riow many potential
netghbors are there iIn a
reguiar, two-dimensional square
grid?

Eight neighbors.

% What de three neighbors
produce in a dormant cell?

8 cell "birth",

140 Lesson 16

(the first five columns) are, respectively, bits 7, 6, 5, 4
and 3.

So to achieve mode G3C, bit 7 must be high, bit 6 is high,
bits 5 and 4 are low, and bit 3 is up to you. Bit 3 is high for
color set #1. So the left five bits of the binary number
created for port $FF22 is 11001. The rightmost three digits
are powered up to 111 on a 16K machine. So the complete
binary number to select full color graphics mode 3, color set
1,is 11001111, or hex $CF. The instructions are simplicity
itself . . .

LDA #$CF
STA $FF22

... easily selecting the proper modes.

But in the process, don’t forget the SAM. It has to be
properly programmed as well. According to the chart
you’'ve been looking at, mode G3C requires that SAM bits
V2, V1 and V0 be programmed binary 100. Turn the page
in the SAM data booklet, and look at the map on page 17.
Addresses $FFCO through $FFCS5 control the SAM modes.
To set mode G3C, then, set bit V2 and clear bits V1 and V0.
That means, remembering the SAM’s write-only register
technique, write to addresses $FFC5, $FFC2, and $FFCO.
So you store any value to $FFC5, $FFC2 and $FFCO. ..

STA $FFC5
STA $FFC2
STA $FFCP

The final setup information is to choose the display
memory starting address, whichI've selected to be found at
$0000. The display offset information is provided by the
SAM, so that setup information must be written to the
SAM. That is done — againrecalling one of early lessons —
by writing to addresses $FFC6 through $FFD2. To
establish starting address $0000 means that binary values
0000 000 must be put into the severr SAM address offset
positions. To place a zero in the SAM — that is, to clear a
bit — you write to an even-numbered address. To place a
one in the SAM — to set a bit — you write to an odd-
numbered address. As you've seen, the display memory
calls for binary 0000 000, sc that calls for writing to
addresses $FFC6, $FFC8, $SFFCA, $SFFCC, $FFCE, $FFDO
and $FFD2.

The most straighforward way of doing this might be to store
an accumulator at each location. .. STASFFC6, STASFFCS,
STASFFCA, etc. Since all even addresses are being set, I've
chosen this case-specific solution. . .

LDB #$87

LBX #$FFC6
VIDEO STA X++

DECB

BNE VIDEQ

VIDEO
MODES

vz | Fres | ser vz
777

0y

vi FFLZ | ek Y/

151
VO Fred |G Vo

STA $FFCS
STA $FRC2!
A $FRC

T
*~

A NN RN SN NEENE U N

... whichwrites to every other even-numbered address fora
total of seven. The B register does the counting, and the X
register points to the first SAM video address. For
contrast, have a look at the general-purpose example
shown at the bottom of page 16 in the SAM data
booklet.

This completes the pre-program setup; take a break now
and review this process, especially if your solutions are
substantially different from mine.

Last time I suggested you have a look at stack instructions
and see how they might be used to fill memory. First, here’s
a standard method of doing a memory fill from $1000 to
$3FFF (you can follow along in the book):

CLRA * Set A to

LDX #$1P@0 * Point X to ;b;$17p0
LOOP STA X+ * Store zero

CMPX #$48P9 * See if finished

BNE LOGP * Go back til done

The main time-consuming part of this routine consists of
the last three instructions, requiring 6, 4 and 3 cycles
respectively. The total of 13 cycles is repeated 12,288
times, for a total of 159,744 cycles. At 894,886 clock cycles
per second, this operation takes a considerable 178.5
milliseconds. . . nearly one-fifth of a second. For fast action
games, that isn’t.

Consider this solution instead (follow me in the book):

CLRA * Set A to P
CLRB * Set B to P
TFR DX * Set X to @
TFR D,Y *Set Yto)
LDS #$4p@p * Point S to top
LOOP PSHS A,B,X,Y * Push 6 bytes
*

CMPS #$1909 See if bottom
BPL LOOP * Back until lower

After clearing A, B, X and Y to zero, the S stack is pointed
to the top of the memory areato be cleared. Remember that
the stack pushes down from the top. A, B, X and Y are then
pushed on the stack using one instruction. The stack is
compared immediate with $1000, the bottom of
scratchpad memory, and if the result is plus (if S is greater
than or equal to $1000), the routine is repeated.

The number of clock cycles required for the PSHS
instruction is 5 plus 1 additional for each byte pushed. Six
bytes are pushed in total, meaning that PSHS A BX,Y
takes 11 cycles to complete. So the heart of this memory fill
routine requires 11,5 and 3 cycles... atotal of 19.19 cycles
is longer than the 13 needed for the previous example. But
remember that in this case, six bytes are pushed at once.

Fast stack use

* What do two or three neighbors
produce in a live cell?

No change.

* What do less than two
neighbors produce?

A cell "death”.

* khat do wore than three
neighbors produce?

f cell "death".

+ What addresses control the 5AM
videg modes?

Addresses $FFLB throush $FFCS,

+ What addresses contral the 5AM
videa disolay offset acdress?

Addresses $FFCO through $FFD3,

* What iz the video aisplay
offset acdress the addrese of”

The upper—lefi-most aicture
gietient shown un the videe
g

f-3
sizplay zoreen.

* Wnat i3 the term for "picture
gisment”

Fisel.

* in the most detailed wmode,
what is the pixel size of the
video screen {pixels wide by

pivels Kigh?

756 pixels wide by 19¢ pixels
nigh.

* What is the pixe: size in mode
€83 (color graphics 3)7?

2 pixels by & pixels.

¥ What is the size of the screen
in mode CBI (width by height)?

128 wide by 96 high,

Learning the 6809 141

Joe’s neighborhood

* How many different points are
displayed on the screen in mode
£63?

12,288 points.

¥ How many bytes are required
for the screen in mode CG3?

3,872 bytes.

% How many colors are available
in mode CB3?

Four colors,

¥ What are the four colors of
VDB color set #@?

Greer, yellow, blue and red.

+ What are the four colors of
VDG color set #17

Buff, cyan, magenta and orange,

+ The push and pull 5 stack

commands reguire an operand,
plus what additional
information?

& postbyte,

¥ What information is contained
in the postbyte?

Bits indicating which registers
are to be pushed or pulled,

% How many registers can be
gushed or pulled?

Eight registers,

¥ What are the eight registers
which can be pushed or pulled?

PC, U, Y, X, DP, B, A and CC

How many bytes are imvolveg in
pushing all eight registers?

12 bytes (2 each for PC, U, Y

and X, 1 each for DP, B, B and
£o).

142 Lesson 16

12,288 divided by 6 is 2,048 . . . there are only 2,048
repetitions of this routine. 2,048 times 19 is 38,912 clock
cycles; again, at 894,886 clock cycles per second, this
instruction completes in only 43.5 milliseconds. That’s
slightly less than one-quarter the time of the previous
method, just one-twentieth of a second.

So where you need tofill blocks of memory very quickly, the
push-stack method is ideal. Don’t forget to save the stack
pointer if you need to, and also to replace the stack pointer
when you're done with it. In this program, I put the stack
pointer at $O0DBF when I'm finished with it:

LDS #$QDBF

If you would like to look through these examples, this is a
good time to stop and do that.

At this point, the Garden of Eden is populated, video
display setup is complete, interrupts are disabled,
scratchpad memory is cleared, and the stack is in position.
It’s time to evaluate the Garden of Eden for the population
of 1its neighborhoods. T'll summarize the Hooper
technique.

If Joe lives in a house on this regular memory grid, then he’s
potentially got a neighbor to the northwest, north, and
northeast; to the west and east; and to the southwest,
south, and southeast. Eight neighbors in all. The screen
grid in this graphics mode is 128 by 96, 128 houses across
by 96 houses down. If Joe lives in house #3761, then he’s
got potential neighbors in houses 3761 minus 129 (that’s
northwest), 3761 minus 128 (that’s north), 3761 minus 127
(that’s northeast). There’s a house to the west at 3761
minus 1, and a house to the east at 3761 plus 1. Finally,
there are houses to the southwest at 3761 plus 127, to the
south at 3761 plus 128, and to the southeast at 3761 plus
129.

JHe
NEIGHBORHOOD

-8 |-80 |-TF
-/ | Ol+]
+TF (180 |16/
& & TorMANT
@ / NEWBORN
/& "peviant”
/ { MRRE

T'll convert those to hex. The screen is hex $80 by $60, so
Joe’s got neighbors at —$81, -$80, ~$7F, -$01, 1+$01,
+$7F, +$80, and +$81. If the Y index register points to
Joe, then the neighbor offsets would be:

-$81.Y
-38p,Y

and $81,Y

The process, then, is really a kind of inverse of this. If those
eight are Joe’s potential neighbors, then Joe is the neighbor
of those eight. So instead of going to every cell and
evaluating all eight neighbors, you can go to every cell and
see if it is alive (that’s the key). If it’s alive, you increment
the neighbor count; if not, you move along to the next.

So instead of making 12,288 checks of 8 neighbors, you
make 12,288 checks for life. So only if a cell is live does the
action become:

INC -§81,Y
INC -$80,Y
INC -$7F Y
INC -1,Y
INC 1Y
INC $7FY
INC 38p,Y
INC $81,Y

This is the heart of the neighborhood scratchpad routine.
But think back to the actual display screen. Only 3,072
bytes are used to display the 12,288 cells. Somehow you've
got to break these into quarter bytes very quickly, and
evaluate them. You might choose a mask-and-shift
strategy, where each pair of bits is shifted left, then masked
and evaluated. You might choose a mask-and-compare
strategy, where four separate routines are used to evalute
the four separate quarter-bytes. Both methods would
work, but in addition to masking or shifting, each technique
would require saving and restoring the original value,
testing, and branching.

The method I've selected takes advantage of the rotate
instruction, which rotates the bits of a byte around in a
circle — but through the carry flag. You can take a look at
the MC6809E data booklet to see exactly howthe ROL and
ROR instructions work. The advantage here is that, by
carefully selecting how I represent live and dormant cells, I
canrotate bits of the display byte through the carry flag and
use the carry to branch to the proper routine. Rather than
spend time explaining the concept, I'll take you right to the
routine itself. Look in your book. As you examine the
program excerpt, keep in mind that I've defined 00 as a
dormant cell, 01 as a newborn cell, and 11 as a mature cell

Learning the

Life checking

* How wany clock cycies does a
push or pull operand use?

3 cycles.

How wany additional clock
cycles are required for each
register pushed or pulled?

{ cycle for each register pushed
ar pulled.

How many cycles are required
to execute the instruction PSHS
pC.u, Y, X, 09, B,R,CC ?

i7 cycles are required.

* How iong is one Color Computer
clock cycle?

1, 11746 microseconds.

* How long does the instruction
PSHS PC, U, ¥ X, DR, B,A,CC take on
the Color Computer?
fbout 19 wicroseconds {18.99
micraseconds).

* How long would it take to fill
£, 144 bytes of memory using PSHS
PC, Y, %, DR, B ACC at 18.99
microseconds per instruction?
9723 wicroeseconds {, 009723
secunds!, or about 1/10@ of a
second.

¥ How many clock cycles is PSHS
A, B X, Y?

% plus 6, or 11
+ How long is PSHS AR X, Y7

i1 times
Ricrosecords,

L11746, or 12.3

* How long would filling 6,144
bytes of wemory take using PSHS
8,B,X,Y?

19446 microseconds {, Q19446

seconds), or adbout 1/58 of 2
second),

6809 s

Rotate to test

* It is theoretically possible
to fill memory wmerely by
executing a long series of PSHS
A, B X, Y. Homever, a comparison
and branch would be reguired,
resulting in a sequence like
this:
LooP PSHS R,B,X,Y

CHPS ¥$c0B0

BRL. LOOP
How long would one iteration of
this sequence take?

11 cycles plus 5 cycles plus 3
eycles, or 19 cycles total; 19

cycles times 1. 11746
microseconds is 21.23
microseconds,

¥ How long would it take the

above sequence to fill 6,144
bytes?

{21.23 microseconds per loop)
times (6,144 bytes divided by 6
bytes per loop) is about 21,739
wicroseconds, about .82
seconds.

¥ The Game of Life uses 12,288
bytes. How long would it take
to fill 12,288 bytes using this
kind of sequence?

Rbout . 843 seconds.

% If the 5 stack pointer is set
to #1008 and the instruction
PSHS R, B, XY is executed, where
will the S stack pointer be at
the conclusion of the
instruction?

At $100Q minus 6, or $AFFA.
% Why $OFFR irstead of $10067
Because the stacks move dowrward

in mewory; they are push-down
stacks.

144 Lesson 16

(that is, past the first generation).

LDX #3p000 Point X to display

LDY #31900 Point Y to scratchpad
NXTCEL LDB #4 Count four quarter bytes

LDA X+ Get video display byte

PSHS CC Save carry flag info

QUARTR PULS CC

ROLA
/ ROLA
PSHS CC

Restore carry flag info
Rotate A through carry
And rotate A again

Save carry (part of byte)

*

*

%

%

*

%*

%*

*

*
BCC NEXTQ * If (=B, then cell not live
INC -381,Y * Northwest neighbor
INC -$88,Y * Northern neighbor
INC -$7F,Y * Northeast neighbor
INC -$81,Y * Western neighbor
INC +$81,Y * Eastern neighbor
INC +$7F,Y * Southwest neighbor
INC +$88.,Y * Southern neighbor
INC +3$81,Y * Southeast neighbor

NEXTQ LEAY 1,Y * Get next scratchpad position

DECB * Count down quarter bytes
BNE QUARTR * Get next quarter byte
PULS CC * Else restore stack info
CHMPX #$pCPP * See if at end of display
BNE NXTCEL * Get next value

X and Y are pointed to display and scratchpad,
respectively. The B accumulator serves as a quarter-byte
counter. The A accumulator holds the byte from display to
be evaluated.

Now here’s the trick. The value in A is rotated left twice,
through the carry flag. That leaves the rightmost bit of the
display pair sitting in the carry flag, and the leftmost bit of
the pair sitting in the bit 0 position of the accumulator. If
the carry is clear, the cell is either dormant (00) or defined
as illegal (10); in either case, it is not a neighbor, so the
routine moves down to the label NEXTQ. If the carryis set,
then the cell is either a newborn (01) or a mature cell (11),
and the eight neighborhood incrementing instructions are
completed. The label NEXTQ follows. More about the
instruction “Load effective address” later; what you see
effectively increments Y by one. The quarter-byte counter
is decremented, and the rotate-and-branch routine is
repeated until four quarter bytes have been done. The
CMPX #$0C00 tests for the end of the 3,072 byte display
area. That’s it. At the end of 3,072 groups of four quarter-
byte tests, 12,288 bytes of scratchpad memory will be filled
with neighborhood information.

To understand this process more intimately, take some
time to draw a small grid of display points excerpted from
the screen (say 16 by 186), a corresponding page of memory
bytes (it would be 4 by 16), and a chart of scratchpad
memory. Put some random cells in place on the display
grid, then determine the display bytes. Finally, evaluate the
results in scratchpad memory. In the next lesson, you'll do
the actual neighborhood checking and updating.

Helio again. I hope you aren’t impatient with this step-by-
step approach. In this lesson, you'll finally be getting to the
application of indexed indirect addressing, and be
completing the Game of Life. The result will be surprisingly
short — under 240 bytes — and quite fast.

We left off having performed all the setups: disabling
interrupts, selecting color graphics mode 3 with color set 1
(12,288 points in buff, cyan, magenta, orange), video
display address $0000. 12,288 bytes of scratchpad
memory has been cleared and filled with neighborhood
information, that is, values 0 to 8.

Once the neighborhood values have been determined, that
information is used to give birth to a cell, to allow a cell to
become dormant, or to leave the cell unchanged. As with all
programming, there are many ways to make this happen.
And, as always, the most obvious solution isn’t necessarily
the fastest or the most efficient. The obvious solution is
something like this . . .

LA Y
BEQ DEATH
DECA

BEQ DEATH
DECA

BEQ NO CHANGE
DECA

BEQ BIRTH
DECA

... and so on. Another technique — and a fast one — would
have started by filling the scratchpad memory with $FE
instead of $00. In this circumstance, zero or one neighbors
would result in the scratchpad value being left with $FE or
$FF. Two neighbors would produce $00 in the scratchpad,
three neighbors would yield $01, and more than three
neighbors would produce $02. A much quicker method, the
final routine would look like this . ..

Learning the 6809

Creating longer programs like
this one can be time-consuming
*up front®, but care taken at
this stage will assure a partly
functioning — if not perfect —
result when you type EXEC. No,
this Game of Life didn*t work
for me the first tise. But the
screen showed proper modes and
colors, and there was
generat ion-to-generation motion.
It wasn't right, but there was

enough to begin serious
debugging. If you spend your
first few hours creating
structure, then outlining

modules, and finally stringing
the pieces together, chances are
your progras will begin to show
evidence of life from your first
EXEC,

* What instructions are used to
turn interrupts on and off?

ORCC and ANDCC.

¢ Why does ORCC #$3Q turn off
interrupts?

Recause setting bits 4 and 6 of
the condition code register
turns off interrupts; #458 is
01010008, so ORCLC #3508 sets bits
4 and & without altering the
other six bits.

145

Indexed indirection

% What addressing wode is JWP
$3438?

Extended addressing.

+ What addressing wmode is JWP
A x?

Indexed addressing.

¥ What addressing mode is JMP
A2

Indexed indirect addressing.

* X points to $1234. A is set
to 4. The wmewory locations
$123@ through $123F contain $@i
434793 AR IIFIIBR

1958 22 00, Where is the
progras counter after JHP
$12347

PC is at $1234.

+ X points to $1234. A is sget
to 4, The memory locations
$1230 through $123F contain $81
82 45 47 93 9 A2 @1 11 F5 36 92

1356 22 ee. where is the
orogram counter after JWP
{$1234)?

PC is at $9396.

*+ X goints to $1234. A is set
to 4. The memory locations
$12308 through $123F contain @1
@2 4547 93 9% AZ @1 11 F5 36 92
195 2 o Where is the
program counter after JMP A, X7

PC is at $1238.

Y points to $1234, A is set
to 4. The memory locations
$123@ through $123F contain $@1
Q24547939 ARMIUIIFIIBR

19 5& 22 oa. Where 1is the
program counter after JMP
(A, %37

PC is at $11F5.

146 Lesson 17

LDA Y * (et value from scratchpad

BRN DEATH * If negative ($FE or ;b,$FF), then death
BEQ NO CHANGE* If zero ($88), then no change

DECA * Decrement A to set flags

BEQ BIRTH * If zero ($f1 minus 1), then birth

BRA DEATH * Otherwise is ;b;$82 or greater

There’s a lot in that short routine, and it’s very fast. In fact,
in this situation, it’s a tossup in speed to the one T've
chosen. Depending on the value in the scratchpad, it can
take three, six, 11 or 14 clock cycles to complete; my
sample method always takes 12 cyeles. My guessis thatina
“mature” civilization, the former method would be faster.
But since this is a lesson on indirect indexed addressing,
then indirect indexed addressing it is.

Indexed indirect looks like this . . .

ASLA * Double A (two-byte offset)
LDX H#TABLE * Point to table of addresses
w [ax]
* Go to routine at X+A
TABLE FDB DEATH

FDB DEATH
FDB NO CHANGE
FDB BIRTH
FDB DEATH

... etc. The A register is shifted left to double its value; this
is true because an address is two bytes long and therefore
requires a two-byte offset. The X register is pointed to the
zeroeth entry in the table of jump addresses. The command
JMP [A X]causes the sum of A+X to be calculated, the
data at addresses A+X and A+X-+1 to be retrieved and
concatenated, and the result to be given to the Program
Counter. This routine is simple — more transparent than
the earlier one — and demonstrates regularity and
consistency. Take some time to review this routine and
contrast it with the previous one. You’'ll note that where
things might get complicated (for example, if there were ten
or twenty choices instead of merely eight), the former
routine gets serpentine and sluggish, whereas the indirect
indexed jump is a fast and streamlined 6-byte jewel.

By the way. You see that I've used the notation “FDB” in
the short program excerpt above. This is an assembler
“pseudo-op”, an instruction for the assembler to use the
information you’ve provided and place the equivalent
binary data in memory. The pseudo-op FCB places a single
byte in the program; FDB places two bytes; and FCC
places an ASCII string. Refer to the EDTASM+ manual,
page 35, for details on how to use these.

I would like you to take a break here and examine the way
this indexed indirect mode is used.

i<

§
5

2 O, % . |, X =
L 7 %3 xha A
a4 %35 X—#cuﬁSas
L5, X7, XH# BirTh
L 8, X2 7, X}-™
—ad75, X277, % M st
|—/Z, X:/3, X
75, X2 15, X
ANDA #3FE pee
e A
PEATTH
ANDA H3FE. _——
ke
Bl RTH
ORA #g0/ w8/
MATURITY

The scratchpad is being evaluated, so all that’s left to write
is the set of death, birth, and no-change routines. To force a
cell into dormancy, both bits are set to zero; the resulting
color is buff, the same color as the background. Recalling
that the display byte has been rotated through the carry
flag, the routine looks like this . ..

ANDA H$FE * Set to OX
ANDCC #$FE * Set to 09
BRA EXIT * Go out

... and you can leave it to a general-purpose exit routine to
complete the rotation and testing.

The no-change routine is slightly more complicated
because it isn’t really no change. As you recall, I wanted to
add some visual variety by having newborn cells displayed
in a different color from mature cells. Newborns are color
01 (cyan) and matures are 11 (orange), so “no change” for
these means changing newborns to matures, and leaving
matures as is. On the other hand, dormant cells are left
dormant, and illegal cells present in the Garden of Eden are
made dormant. Dormants are buff (00) and illegals are
magenta (10), so “no change” for these means changing
illegals to dormants, and leaving dormants as is. Here’s how
it looks:

BCS HIGH * Go if € =1

% C = ﬂ
ANDA H#SFE * Set to P9

BRA EXIT * Go out

HIGH *C=1
ORA #8p1 * Set to 11

BRA EXIT * Go out

That leaves only the birth routine, which, if a cell is already
alive, can be considered a ‘‘no change’ routine. It is slightly
more complex than the previous routines because dormant
cells must be changed to newborns (00 to 01); illegal cells
must be changed to newborns (10 to 01); newborns from
the previous generation must be changed to oldsters (01 to
11); and oldsters are left unchanged (11 to 11). Putting it in
chart form helps; look in the book:

Birth Routine

Present cell: Changes to:

g8 (buff) (dormant) #1 (cyan) (newhorn)
19 (magenta) (illegal) @1 (cyan) (newborn)
@1 (cyan) (newhorn) 11 (orange) (mature)
11 (orange) (mature) 11 (orange) (mature)

The carry flag is again the determining factor. If the carry
flag is clear (zero), a newborn is created; if the carry flag is
set, an oldster is created (or maintained). Here’s how that
looks . ..

Learning the O8O9

Birth routine

* X points to $1234. A is set
to 4 The wmemory locations
$123@ through $123F contain $@1
AT 4347 339 A2 01 11 F5 36 92
19 58 22 8. Where is the
program counter after JMP
29, X7

PC is at $123D.

X points to $1234 A is set
to 4. The memory locations
$123@ thiough $123F contain $@1
@C 45 47 93 % A2 @1 11 F5 36 X

139 ¥ =& W Where is the
program counter after JWP
{($@9, %3 ?

PC is at $SE22.

+ X points to $1234. A is set
te 4 The wemory locations
$1238 through $123F contain $@1
@2 45 47 93 9 A2 @1 11 F5 36 92
19 S5E & @ Where is the
grogram counter after IMP -2,X?

7 is at #1232,

X points to $1234, A is set
to 4 The memory locatiors
$1230 through $1¢3F contain $@1
Q2 454793 % A2 QL 1L F3 36

{9 58 22 @, Where 13z the
orogram counter after JMP
2 0?

PC i3 at 4547,

£ ¥ peints to $1234. A is set
to 4, The memory locations
$1230 through $123F contain $8§
22 43 47 93 96 A2 @1 13 F5 36 32
i9 58 & o Where is the
program counter after JMP X7

PC is at #1234,

+ } points to $1234. A is set
to 4. The memory locations
$1230 through $123F contain $@1
02 43 47 93 96 A2 @1 11 F3 36 82
19 SE 22 0, Where 1s the
arogram counter after JMP ((X)?

AC 15 at $93%6.

147

Scratchpad

*hat is the term for an
instruction for the assembler to
use the information you've
provided to place binary data in
mewory?

A pseudo-op.

* What kind of information does
the pseudcop FCB place in
nenory?

Ore byte.

* phat kind of information does
the pseudo—op FDB place in
semory?

Two bytes.

% What kind of information does
the gseudo—op FCC place in
memory?

fn ASCII string of characters.

Hand assemble the following:
LDY 41235

Jep sARD7
FCB $A
FOBR S80F3

$BE 12 34 TEPB D7 Ao B0 F3

% What is another name for a
wark area of wewory?

A scratchpad.

¥ What is the scratchpad used
for in this bame of Life?

Te store
inforeation.

neighborhood
¥ In this Bame of Life, what bit
pair regresents a dormant cell?
Bit pair 0.

In this Game of Life, what bit
pair represents a newborn cell?

Bit pair @l.

In this Game of Life, what bit
pair represents a mature cell?

Bit pair 11.
148 Lesson 17

BCC LOW * Pass if C =8
*0=1
ORA #$P1 * Set to 11
BRA EXIT * Go out
LOW *C=8
ANDA #$FE * Set to ff
ORCC #3$Pp1 * Set to B1
BRA EXIT * Go out

So there you have the heart of it. There’s some work to do
right at the end. Consider this: if you store the display byte
directly back on the screen, the new generation will swim
down over the previous generation. Since one of the
premises of the Game of Life is that all generational
changes take place simultaneously, this swimming effect
should be avoided. It can be avoided by filling a second area
of memory and switching screens. But with 3,072 bytes
required for display, 12,288 bytes required for the
scratchpad, and about 230 bytes for program and stack,
that leaves less than 700 bytes for a second screen. So what
to do?

My solution lies in using that scratchpad for two purposes.
Think of it this way. Each four-cell display byte is
represented by four bytes of scratchpad memory. Once
four scratchpad bytes have been used to determine the new
display byte, they are no longer needed. After eight
scratchpad bytes are evaluated, two display bytes have
been produced. After all 12,288 scratchpad bytes have
been used, 3,072 display bytes have been produced.

In that pattern lies the opportunity. The new display screen
can be placed in scratchpad memory, because the using up
of the scratchpad memory always outpaces by a ratio of
four to one the production of display memory bytes. When
the new screen has been produced, the video offset address
in the SAM can be switched to that new screen in
scratchpad memory.

Now since scratchpad memory has to be used again for the
next generation, that screen has to be ushered out of that
area of memory. Once the video has been redirected from
$0000 to $1000, the contents beginning at $1000 can be
transferred to memory beginning at $0000. Then, when the
original display memory is filled with the new generation,
the video offset address can be switched back. The
evaluation of the generation, production of the new
generation, screen switching, and display memory
transfers are entirely invisible. Here’s how the code looks. .

Switch to screen at $1088

Point X to new screen
LDY #56908 Point Y to old screen

TRNSFR LDA X+ Get value from new screen

STA $FFCD *
*
*
*
STA Y+ * Store value to former screen
*
£ 3
%

LDX #31p09

CMPX #$1CPB * See if screen is finished
BNE TRNSFR * Go back to finish screen
STA $FFCC Redirect video to $0080

SCRATCH PAD

a7

-1

acee

ocsee

acasz
acs4

eca7
acas
acsc
@C8E
@C8F

acal
AC94
acs7

iR

86
B7

B7

B7

Se

CF
FFze

e7
FFC6

FE

FFLS
FFC2
FFC@

And there you have it. All that’s really left to do is to put all
the pieces together, keep track of where and how the stack
is used, and organize the automatic repeating process to
keep the generations going. The entire commented
program listing follows on this tape, and is also printed in
the book. You can load and examine this listing, and then
run the object code which is also on the tape. After you're
done reviewing the listing and trying the program, T'll
summarize the programming concepts and ideas from
these past three sessions.

Program #27A, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (s} and find (F}. When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or it an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading
problems, see the Appendix.

Life

¥ In this Game of Life, what is
bit pair 1@?

An "illegal" or "deviant” cell.

Why is bit pair 1@ an illegal
or deviant cell?

Because it is present only in
the Barden of Eden, but is not
found in future generations.

* Why are bit pairs used?

Two provide a four-color

display.
¥ What video mode is this?

Video mode CB3.

QAL D@ NI I I I I P 356 W H 2 P T A6 I T I T 26 AW I3 A

acaiia » *
RAIZD * THE GAME OF LIFE *
ea13@ » *
@140 % BASED ON THE PASTIME DEVELOPED RY JOHN CONWAY *
@150 * *
2016@ % COLOR COMPUTER VERSION 1.0 BY DENNIS EATHORY KITSZ #
o170 * *
P BRI S T 2 A R R A Y R YA I Y
a15a *

Qaz@2 ORG $QCHG

2az1d =

pRzz@ # DISABLE INTERRUPTS EY MASKING I AND F RITS IN CCR =
ag23a *

2@z4@ START ORrRCC #ESA * DISABLE INTERRUPTS

QA2Sa =

@az6@ # COLOR SET @ CHOICES ARE GREEN, YELLOW, ELUE, RED
a@c7e » COLOR SET 1 CHOICES ARE BUFF, CYRAN, MABENTR, ORANGE
2@28@ * PORT ADDRESS $FF&2 CONTROLS COLOR SETS, OTHER INFOD
aaz9a *

B300 LDAR #$CF # VALUE FOR COLOR SET

easie STR sFFae * CHOOSE COLOR SET

QA322 »

Q@330 # THE DISPLAY SCREEN MEMORY IS5 SELECTED TO RUN FROM
Q2340 » $0Q2@ TO $@BFE@ (3072 BYTES), USING COLOR GRAPHICS
@23%5@ #* MODE 3. THE FOLLOWING RDUTINE RESETS EVEN ADDRESSES
Q@360 * $FFC6 THROUGH $FFDE2 IN THE 5AM, SELECTING THE VIDED.
_GB3I7E =

aa3se LDE #$Q7 # VIDEO DISPLAY ADDRESSES
Qa33a LDX #$FFC6 « FIRST SAM VIDED ADDRESS
Q0400 VIDED STA 5 X4+ # DD EVERY OTHER ADDRESS
aQ41Q DECE #+ DONE WITH SETUP YET?

aaszd EBNE VIDEQ * DO NEXT DISPLAY ADDRESS
@a430 =

2044@ * THERE ARE THREE GRAPHICS MODES TO BE SELECTED 70
@@45@ » ACHIEVE COLOR GRAPHICS MODE 3. S5AM ADDRESSES $FFCQ
@a46@ * THROUGH $FFCS SET UP COLOR GRAPHICS MODES.

@R472

aas48@ 8TA $FFCE * SET GRAPHIC MODE &2

@a49@ 8TAR $FFCZ # RESET GRAPHIC MODE 1

easee 5TA $FFCR * RESET GRAPHIC MODE @

AQS51e =

A@52@ # THE FOLLOWING ROUTINE CLERRS A 1ZK AREA OF MEMORY
Q@53@ # FOR USE AS A SCRATCHPAD WORK AREA WHEN EVALUARTING
2@S4@ * THE PRESENT GENERATION OF CELLS. THE METHOD CHOSEN
@uS5@ * HERE TO CLERR MEMORY IS VERY FAST. INSTEAD DOF A
2Q56Q + "STA ,X+* STYLE OF MEMORY FILLINBG, SIX BYTES (THE
20578 + TWO ACCUMULATORS PLUS THE X AND Y REGISTERS) ARE
aa58@ # CLERRED 7O ZERO. THE STACK IS POINTED TO THE T0OP
2Q59¢ * OF THE MEMORY 70 BE CLEARED, AND THE SIX BYTES RRE
QR6RQ #* PUSHED ON THE STACK UNTIL THE MEMORY AREA I8 FULL.
Q2612 *

Learning the

149

Life

@CoA
@C9Kk
@ac9ac
@aC9E
acRe
aCh4
ache

@ChPAR 2

achC

acke
@CE3

@CE7
@CE9
@CEER
@CEC
@CBD

@CEF
aces
acCe
accH
@CCH
@CcCD
@cpa
aCD4

acD8
@CDR

@CDE

@CDD
@CEQ

ACE2
aCES

@CET
@CER
@CED
QCEF
@acF1i
ACF3
@acCF4
@CFS
@CF7

4F
SF

1F

1@CE
34
118C

1@aCE

8
1@8E

Cce
(213
34
34
35
49
43
34
21

az
a1

4L@@Q

36

120@

F8

@DEF

aaag
ioee

a4

19

=1

DE

FF7F

81

7F

Pvd=tg
aag1

acea

DS

150 Lesson 17

26z
QAEIQ
2R64Q
@aesa
2R66Q
oae7a
Qee8n
22650
aa7@
aa7ia
Qaa7z@
RB73R
Qa74@
drdrg=trd
Q@76
@aa77@
aa78@
da7sa
2@82@
aas1
oaaze
relrd=etvd
a4
[ral=balvg
aaaen
ape7a
ans8@
aas9@
[rlr ke vl
Qe31@
dagzad
@as33a
@54
dvjeiet’d
QA@36a
Qa37a
aa38@
aa33a
@lezee
al@aia
G1eza
ala3a
aia4@
@125
alaed
@ilava
ailese
Qiasa
aiiom
@ailia
a11&@
2113@
al14@
2115@
@iie@
a117a
@118
Q119
a1zad
ai1zi@
@ize@
al1z3@
Q1zaH@
@a125@
aize@
@127
@izaa
@a129e
ai13ee
z2i31@
Q1320
21330
Q1340
2a135a
@a136Q
@137@
@138
@a133@a
ail4a@
@i41@
@a142@
z143@
2144@

AGAIN CL.RA

SET ACCUMUILATEGR A = @
Iy

*
CLRE % SET ACCUMULATOR F =
TFR D, Y * SET REGIBTER Y = @
 TFR D, X * SET REGISTER X = @
LDS 584200 * STACK TO TGP OF SCRATCHPAD
NEXT1 PSHS A, B, X,Y * PUSH & EYTES ON THE STACH
CMPS #$102@ * IS STACK UNDER H#$100@ Y77
EPL NEXTL = KEEP GOING IF NOT THERE
*
% THE STACK IS THEN SET OUT OF THE WAY DF THE
* "NEIGHEORHOOD® INCREMENTING ROUTINE WHICH FOLLOWS.
+*
LDS #$@DEF
*
* THE "NEIGHEORHODD" INCREMENTING RDUTINE USES THE
* HDOPER METHOD. IN MOST CONCEPTUALIZATIONS DF THE
* BAME OF LIFE, EACH CELL POSITION IS CHECKED FOR
THE NUMBER DF NEIGHEORS WHICH SURRDUND IT. IT TURNS
% DUT THAT, AFTER THE FIRST GENERATION (THE GARDEN OF
* EDEN GENERATION), THERE ARE ALWAYS LESS LIVE CELLS
% THAN DORMANT ONES. SO INSTEAD OF CHECKING FOR THE
% NEIGHEDRS OF EACH CELL, IT 1S FASTER TO CHECK EACH
% CELL TO DETERMINE WHOSE NEIGHEOR IT IS. WHEN ALL
* CELLS HAVE BEEN CHECKED, A COUNT OF NEIGHBORS HAS
* BEEN CREATED.
¥*
LDX #4002 % POINT X TO DISPLAY
LDY #$100@ * POINT Y TO SCRATCHPAD
»*
NXTCEL LDE BEQS * COUNT FDUR QUARTER BYTES
LDA y X+ * BET VIDED DISPLAY EYTE
QUARTR ROLA * ROTATE A THROUGH CARRY
ROLA * ROTATE A THROUGH CARRY
ECC NEXTR * IF C=@, THEN CELL NOT LIVE
*
% HERE 15 THE NEIGHBORHOOD:
*
* / -81 / -8@ / -TF /
%
* / -1 / JOE / +@1 /
% e
* J +7F / +8@ / +B1 /
F ——
*
INC -$81,Y * UPPER LEFT NEIBHEOR
INC -$8@,Y * UPPER NEIGHEOR
INC -$7F,Y * UPPER RIGHT NEIGHBOR
INC -$@1,Y * LEFT NEIGHEOR
INC $Q1,Y * RIGHT NEIGHEOR
ING $7F,Y * LOWER LEFT NEIGHEOR
INC $8@,Y * LOWER NEIGHEOR
INC $81,Y * LOWER RIGHT NEIGHBOR
*
NEXTR LEAY 1,V * GET NEXT SCRATCHPAD POSITION
DECH * COUNT DOWN BY QUARTER BYTES
ENE QUARTR * BET NEXT QUARTER BYTE
CMPX #$QC@@ * SEE IF END OF DISPLAY
ENE NXTCEL % ELSE GET NEXT VALUE
*
% ONCE THE NEIGHEDRHDODS HAVE BEEN DETERMINED, THE
% INFDRMATION IS USED TD GIVE EIRTH TO A CELL, ALLOW
%+ A CELL 7O DIE, OR LEAVE THE CELL UNCHANGED. A TEST
* FOR @ OR 1: £; 33 4 OR MORE NEIGHEORS COULD EE DONE
% BY USING THE SCRATCHPAD INFORMATION. IN THIS CASE,
% THE INFORMATION (@ THROUGH 8 NEIGHEORS) IN THE
% SCRATCHPAD 15 USED AS AN OFFSET TO A TABLE OF
* ADDRESSES. THE X REGISTER PDINTS TO THE ZERDETH
% ENTRY IN THE TRELE, AND THE A REGISTER PROVIDES THE
% OFFSET. X+A 1S THE ADDRESS OF THE DEATH, EIRTH AND
% NO CHANGE ROUTINES.
*
LDX #$000@ * PDINT X TO VIDEQ DISPLAY
LDY #$100@ * PODINT Y TO SCRATCHPAD
*
CIRCLE LDE #5504 * COUNT FOUR QUARTER BYTES
LDA 5 % * GET VIDEQ DISPLAY BYTE
PSHS X * STASH X REBISTER FOR LATER
PSHS A, CC % STASH VIDED, CARRY INFO
HERE PULS A, CC % RESTORE VIDEQ, CARRY INFOD
ROLA % ROTATE THROUGH CARRY FLAB
ROLA * ROTATE THROUGH CARRY FLAB
PSHS A, CC * RE-SAVE ROTATING A, CARRY
LDA LY+ * BET VALUE FROM SCRATCHPAD

acF3
@CFA
@CFD

@CFF
@apai
epes
@Des
apa7
aeDa3
@DeR
@D&D
apar

api1i
aDpi13
an1s

QD17 =

eD13
@D1E
@D1iD
@D1F
@Dzl
anz3

anas

ape7 &

@nz9
@DZB
epzh
@DzF

an3i1
an33
@D34
D36
eaD38
D3R
@D3B
QD3F
@D41
@D4a4

@D46

48
aE
6E

e

[Ch]
84
1C

35
25
84
@
=121
z@

B7

ACFF
36

@Dii
@D11
@api13
@D&5
@Dit
@aD11
aDi1
aDii
@apii

a3

BB

1a

89 100e

@Ced
A3

FFCD

@1 45a
Q146@
Q147@
@1482
a143@
ai1sea
Q1512
@aisze
@153Q
ai154@
[Gkl
a156@
@a157@
ai158@
Q@153@
2160@
algla
al16E@
a163@
a164@
Q152
21660
@167
al166a
@aie3a
Qr7@a
@i171i@
d17z@
@173@
a174@
2175
@a176@
ai77e
@178@
a179@
ai8e@
ai81@
@180
@i18z@
@184Q
@185@
@186Q
aia7e
ai188@
@189
ai1sae
@aigie
@19ze
21338
a134@
@135
@1960@
ai137e
«198@
@199@
azeae
azaie
azez0
stk
Qzaa4@
[r=trisat}
QZ06R
az@ava
L=drd=1]
ozage
ac1a0
az11@
@z1z0
2z13@
azi4@
az15e
az16@
ezi7e
azige
2190
Qzzo0
ez210
gzeee
eze3e
aze4a
Q2258
azeea
ezzve

ASLA % DOUEBLE IT (2-BYTE OFFSET)
LDX #HIARP * GET START OF TABLE
Jrp +A, X« # ADD OFFSET & JUMP TO ROUTINE
*
AP FDE DEATH * ROUTINE NEIGHRORHOOD = @
FDE DEATH * ROUTINE NEIGHEBORHOOD = 1
FDE NOCHNG % ROUTINE NEIGHEORHOOD = &
FDR BIRTH # ROUTINE NEIGHEORHOOD = 3
FDR DEATH % ROUTINE NEIGHRORHOOD = 4
FDE DERTH *+ ROUTINE NEIGHBORHOOD = S
FDE DEATH # ROUTINE NEIGHEORHDOD = 6
FDE DEATH # ROUTINE NEIGHBORHOOD = 7
FDE DEATH # ROUTINE NEIGHEORHOOD = 8
*
* THE DEATH ROUTINE MUST CREATE COLOR VALUE @@ ON THE
% COLOR GRAPHICS DISPLAY SCREEN. HALF OF THIS VALUE
*+ 1S PRESENTLY IN THE A RACCUMULATOR, AND THE OTHER
* HALF IS IN THE CARRY FLAG. BOTH ARE SET TO ZERO
#+ IN THIS ROUTINE.
*
DEATH PULS A, CC * SAVE DISPLAY, ROTATING EIT
ANDA HEFE #* MASK OUT BIT ZERD
ANDCC HSFE * MASK OUT CARRY RIT
BRA ouT + (G0 OUT TO ROTATE & DISPLAY
*
* THE NO~CHANGE ROUTINE 15 NOT PRECISELY THAT IN THIS
* CASE. COLORS IN THIS GRAPHICS MODE ARE BUFF, CYAN,
% MAGENTA AND ORANGE, AS REPRESENTED RY PATTERNS 2@,
+ 21, 1@ AND 11, IN THIS PROGRAM, DORMANT CELLS ARE
* SHOWN IN BUFF (@@), NEWEBORN CELLS IN CYAN (&1), AND
* CELLS OLDER THAN ONE GENERATION AS ORANGE (11). THE
% VALUE 1@ (MAGENTA) 15 DEFINED AS ILLEGAL. HOWEVER,
SHOULD IT QCCUR IN THE "GARDEN OF EDEN", IT MUST EE
* CHANGED TO @@. THIS ROUTINE MAKES THE CHANGE.
*
NOCHNG PULS A, CC * RESTORE ROTATED DISPLAY INFO
BCS HIGH #* IF SET, MERNS BIT ZERO = 1
ANDA H#SFE * MAKE 1@ OR @& RECOME @@
ERA ouT * AND GO QUT, STORE & DISPLAY
HIGH ORA HEA1 * MAKE @1 OR 11 BECOME 11
ERA ouT # AND GO OUT, STORE & DISPLAY
*
% THE BIRTH ROUTINE IS ALSO A "NO CHANGE" ROUTINE IF
THE NUMBER OF NEIGHBORS 1S PRECISELY THREE AND A
* LIVE CELL ALREADY EXISTS. VALUES FOR NEWHORNS ARE
GIVEN AS @1 (CYAN), BUT ALREADY EXISTING CELLS mUST
* BE CHANGED TO OLDER CELLS IN DRANGE (11). ALSO,
#* ANY ILLEGALS (1@, MAGENTA) MUST BRE CHANGED.
*
RIRTH PULS A, CC # GET ROTATED DISPLAY VALUE
RBRCC LOW #* GO IF CARRY = @ (@@ DR 1&
ORA #$@1 * IF C=1, MAKE i1 = DLDSTER
ERA ouT * GO OUT, STORE AND DISPLAY
LOW ANDA #$FE * C = @; MAKE @2 DR @1 RE @@
OREC #5501 # THEN MAKE VALUE BECOME @i
*
*+ THE "DOUT" ROUTINE IS AN ORDERLY EXIT, TESTING FOR
#* THE ROTATED POSITION OF A (THE QUARTER~BYTE COUNT),
DOING THE FINAL (NINTH) ROTATE TO GET THE BYTE
BACK IN POSITION IF NECESSARY, STORING THE FINAL
#* BYTE IN A TEMPORARY SCREEN, AND ERANCHING EBACK IF
THE ENTIRE 3,@72 BYTE BLOCK (12,288 CELLS) HAS NOT
% BEEN DONE.
*
ouT PSHS A, CC * STASH ROTATING EBIT, VIDEO
DECE * TEST FOR NEXT RQUARTER BYTE
BNE HERE # IF NOT DONE, GET NEXT QUARTER
PULS A, CC * RESTORE ROTATING RIT, VIDED
PULS X * RECOVER STASHED X REGISTER
ROLA * ROTATE TO RESTORE POSITION
STR $10@@, X * AND STORE BACK INTO DISPLAY
LEAX 1, X * BET NEXT POSITION IN PLACE
CMpX #s@C@@ * SEE IF END OF DISPLAY YET
BNE CIRCLE # IF NOT, BACK FOR NEXT RYTE
*
* THE FOLLOWING ROUTINE REDIRECTS THE SCREEN 7O ¢1@0@,
* WHERE THE NEW GENERATION HRS BEEN CRERATED. IT THEN
* COPIES THAT INFORMATION INTO THE SCREEN STARTING AT
* $Q@@@a, AND SWITCHES SCREENS. THIS WORK-AND-SWITCH
% PROCESS PREVENTS THE NEW GENERATION FRDM SWIMMING
*+ DOWNWARD OVER THE PREVIOUS GENERATION AS YOU WATCH.
*
STA $FFCD # SWITCH TO SCREEN AT $1000Q

Learning the

Life

151

Life

@D43 BE 1000
2D4C 1@8E Q000
eD5e A6 8a
ansE A7 AL
@D54 BC 1cCea
AD57 26 F7
@D59 B7 FFCC
@DpsC 7E @ac9A
acae
@@ea@ TOTAL ERRORS
AGAIN [[05=)
BIRTH anas
CIRCLE @CE?
DEATH @D11
HERE @acr1
HIGH @Dz
LOW @D2D
NEXT1 @ACR4
NEXTR aCD8
NOCHNG @D19
NXTCEL @CR7
ouT @aD31
QUARTR QCBE
START acae
VIDED acsC
XFER apse
AP @CFF

In this video display, if the
A accumulator contains 11110102,
what cells are present?

¥ature, mature, rnewborn and
dormant.

+ I[f the A accumulator contains
10110082, what cells are
gresent?

Illegal, wmature, dormant and
dormant.

% What gereration is this?
Why?

The Garden of Eden, because

illegal cells cannot occur in
subsequent generations to the
Garden of Eden.

¥ A contains 1011008Q in the
Garden of Eden. If the
algorithe says all cells remain
unchanged — in terms of this
Bame of Life —- what will the A
accumulator contain in the next
generation? Why?

A will contain Q1110000 because
illegals are changed to newborns
after the Barden of Eden.

152 Lesson 17

22280 «

a229@ LDX #%$100@ » POINT X TO NEW SCREEN

Q2300 LDY #$Q@@@ + PDINT Y TO OLD SCREEN

@z31@ XFER LbA g X+ * BET VALUE FROM NEW SCREEN
az3eze 87TA s Y+ + TRANSFER VALUE TO OLD SCREEN
@z332 CcmMpXx #$1C0@ * SEE IF SCREEN IS FINISHED
22340 ENE XFER * B0 BACK TO FINISH SCREEN
2235 =

@az3ee STA $FFCC * REDIRECT VIDEO TO se@o@
RIITD *

@az38@ JmMp AGARIN #+ AND REPEAT THE WHOLE PROCESS
2233

Q24QQ END START

Program #27B, an object code program. Turn on the power to
your Extended Color BASIC computer. When the cursor ap-
pears, type CLOAD and press ENTER. The computer will
search (S} and find (F). When the cursor reappears, type EXEC
and press ENTER. The program will execute automatically, If an
1/0 error occurs, rewind to the program’s start and try again. For
severe loading problems, see the Appendix.

Watching the Game of Life is a fascinating experience. A lot
has been written about this pastime, and versions in three
dimensions and many colors have been developed.

My intention with these three lessons was not only to
introduce the concept of indirect indexed addressing, but
also to demonstrate with an apparently complicated
example the idea of compartmentalized or modular
programming. The modules were designed for speed, but
with little modification they could be used as complete
subroutines . . . those that select color sets, video display
memory, and graphics modes and the one to fillmemory are
complete. The Life routines consist of the evaluation block
and the more complex regeneration section. I've drawn
arrows in the program listing to show the clear program
flow. I'll also tell you that this program wasn’t an off-the-
cuff creation; it was in fact revised nearly 20 times before it
was ready for you to see. Not that it didn’t work until 20
tries, but rather that I used more instructions thanIneeded
to do some of the work. Inlooking for economies of speed, I
was able to rethink the details of each routine. You'll do

that too as you attempt larger-scale programs.
Here's a summary of the concepts that you have seen:

1. You should be able to establish video modes by
referring to the SAM and VDG setup charts and the Color
Computer memory map.

2. You should be able to set A, B, X and Y registers and
then use the push stack instructions for fast memory filling
or clearing.

3. You shold be able to set the stack pointer to a specific
place in memory using the LDS instruction.

4. You should understand how to use the rotate
instruction to rotate part of a byte into the carry flag, and
then employ that information for program branching.

5. Youshould be able to use afixed pointer plus a variable
offset to select an address from a table of addresses, and
then access the information at the resulting address. In
other words, you should understand indirect indexed
addressing.

6. You should be able to directly manipulate the
condition codes (in this example, the carry flags and
interrupt masks) using ANDCC and ORCC instructions.

7. Youshould undérstand the whys and hows of switching
video display modes to hide manipulation of memory.

8. You should have read about pseudo-ops in the
EDTASM+ manual, and be able to use ORG, EQU, END,
FCB, FCC, FDB and RMB. In summary, these are:

ORG defines the first byte of the program.

EQU identifies the value of a label.

END concludes the assembly process.

FCB identifies a specific byte to be placed in
memory.

FDB identifies a spedific two-byte word to be
placed in memory.

FCC identifies an ASCII string to be placed
in memory.

RMB tells the assembler to reserve — that is,
not to use — a block of memory.

I hope all these concepts are clear to you. If you don’t feel
completely confident, please review. Review the written
text for specific items, and review all three lessons if you
don’t think you could create a complete body of assembly

Learning the O8O

Pseudo-ops

¥ If A is 9111000@, what are the
values of A in binary and
hexadecimal, and the value of
the carry flag, when ROLR is
executed four times? (Assuxe
the carry flag is zerc to
start).

Start A = 01110000, 72; C=0
A = (1000008, C@; C=i
A = eodd0Ril, Q35 C=1
A = apeQiila, @E; C=0

A - 00111008, 38; C=2

¥ The scratchpad semcry in this
Game of Life is used for two
purposes; shat are thay?

{. To store the neighborhood
count during evaluation.

2. To build a rnew screen
containing the next generation.

* What is an algorithw?

A generai terw for a set of
rules,

¥ What is a pixel?

A picture element,

% What does VDG wmean?
Videa Display Generator,

now many pixels does the Color
Computer’s VDB provide?

58 horizontal by 192 vertical
pirels.

How wmany different points are
displayed on the screen in the
most detailed graphics wode
{mode RGE)?

49,152 points,

* How many bytes are required
for the most detailed graphics
wode (mode RG6)?

§, 144 bytes.

153

Summary

* Why can 6,144 bytes display
49,152 points? ;

Because one byte represents
eight display points.

* What addressing mode is JMP
434567

Extended addressing.

¥ What addressing wmode is JMP
A x?

Indesed addressing.

¥ What addressing mode is JMP
RN

Indexed indirect addressing.

* what does the instruction LDS
#5100 do?

It loads the hardware stack
pointer {5} with the value
1000,

¥ What does the instruction DRCC
#4508 de?

It turns off the interrupts.

*+ What kind of instruction is
FDB $AAD7?

It 15 an assembler pseudo—op.

* Hhat does FDR $ABD7 do?

1t tells the assewbler to place
the two-byte word $ARD7 In
HEWOTY.

What is an addressing mode?
The way in which a wachine

language instruction gets its
information.

154 Lesson 17

code to solve a similar programming problem. These three
lessons have offered approach, conceptualization,
decision-making, and programming technique. These
three lessons — in fact, the past five lessons — are the
gateway to the rest of this course. [urge you to understand
them well. Till next time.

INCA
X+

TMP

Have you ever typed in a long assembly language program
listing from a magazine, accepting on faith that it would
work on your Color Computer? And then finding out that
your XYZ disk system or your Apex memory dewormer was
already using that area of memory? Within certain
limitations, that inflexible approach to memory use isn’t
necessary any more, Utility programs — especially those in
semi-permanent installations such as the XYZ disk or
Apex dewormer — should be able to be moved to other
areas of memory and still perform their advertised
functions. Until the introduction of the 6809,
microprocessors couldn’t offer this as a standard feature.. ..
a feature known as Position Independent Programming.
Your Color Computer can do it. Position Independent
Programming is the topic of this session.

To understand position independence, you have to
understand the limitations of position dependence. Have a
look at the program in the book; the mnemonics read:

1086 8E 1234 LDX #$1234
1883 1P8E 5678 LDY #3$5678
1887 B6 FF28 LOOP LDA §FF2p
1088 27 93 BEQ LATER
1pgC 7 1p@7 JHP LOOP]
1p8F 7F ppBl LATER CLR $@681

There’s nothing especially useful about this program, but
it’s good enough code. The A accumulator is being loaded
from what looks like an input port address, and branching
tothe label LATER if the loaded valueis zero. If it’s not, the
program jumps back to the position marked LOOP.

But what if you needed to move this program from address
$1000 to, for example, address $2000? Well, if you were the
programmer, you would simply load the source code into
EDTASM+ andre-assemble it at the new origin. But if you
had purchased the program and you didn't know its
structure or contents, but nevertheless needed to move the
binary code from $1000 to $2000, something unhappy

Learning the 6809

I sigh at the prospect of having
to disassemble, examine and
relocate some assembly Ianguage
agplications prograss -
spreadsheets are one example -
faced with their enormous size
and complexity. This usually
happens when I want to tiptoe
around some special printer or
video driver I've created. With
6689 oprograms I’ve had the
chance to be pleasantly
surprised, since some not only
can be located easily in other

areas of meNory, they
automatically relocate
themselves to respect memory

limits and other configurations
you've set ahead of time.
Machine language programs which
run independent of their
position in wmemory is the
exciting goal of this session.

* Bhat is an addressing mode?

The way a machine language
progras gets its information.

* What addressing mode is JWP
$1234?

Extended addressing.

* What addressing wmode is BRA
LOOR?
Relative addressing.

155

Program counter relative

¥ Relative addressing is
relative to what?

The program counter (PC).

* How does BRR $FE differ frow
JMP $3456 if both instructions
begin at address $3456?

They differ in that BRR is 2
bytes and relative addressing,
whereas JWP is 3 bytes and
extended addressing,

* How is BRA $FE similar to JMp
$3456 if both instructions begin
at address $34567

Both are endless lcops.

% Is BRA $FE an endless loop if
it appears at address $3453?

Yes,

* [s JHP $3456 an endless loop
if it appears at address $34357

No.

* What happens to JMP $3436 if
it is moved to address $34557

The desired opcode JHP ($7E) is
now at $3455, The program
counter peints to address $3456
where it finds $34 56 instead of
$7E, $3% 36 isn’t an
instruction, but the processor
thinks it is, executing $34 56
-- PSHS U, X, A,B. Crash'

¥ What do mnemonics BEQ and BNE
mean?

Branch if equal to and branch if
not equal to.

* What do mnemonics BLC and BCS
mean?

Branch on carry clear and branch
on carry set.

156 Lesson 18

would occur. Everything in the program would seem
perfect until it reached that jump to label LOOP. As far as
the binary code is concerned, that jump is specifically to
address $1007. $1007 is an absolute, fixed address; with
the program now residing at $2000, trouble would be on the
way. By contrast, the program branch to label LATER is
relative addressing . . . the branch is measured from the
current position of the program counter. Do you see that?
JMP goes to a known, numbered, fixed memory location;
BEQ moves to a new position relative to wherever the
program is now.

Now, I diduse JMP in this example whenI could easily have
used branch always, BRA. But what if the jump were to an
address 5,000 addresses away? An ordinary branch can’t
move that far, since it’s limited to relative movement
between +127 and —128. And what about subroutines?
The opcode JSR also requires a fixed address. And then
there’s always the problem of loading X and Y registers
with the locations of important tables of information found
within the limits of the program. How can these memory
locations be identified if not by their fixed locations? Those
are the frustrating questions of position independence:
how to avoid specifying a fixed, numerical address
anywhere in the program.

Well, you can probably guess that I wouldn’t be asking
those rhetorical questions if I didn’t already have an
answer. And you're right. The 6809 commands JMP and
JSR can be cashed in for the 6809’s flexible Branch and
Long Branch commands. Not only can you execute long
branches to any relative position throughout all of memory,
but you can perform long branches to subroutines in any
relative position throughout memory. And those load
immediate instructions can be cashed in for what’s known
as “‘program counter relative” indexing.

The price you pay for these relative branches or indexings
is an additional clock cycle or two, plus a slightly different
process of thinking. Everything can become relative to the
program counter, not just short and long branches, but
evenloads and stores. Loads and stores canmake use of the
special “,PCR” version of the indexed addressing mode.

Before 1 get carried away with the excitement of
generalities, I want you to do a little reading. Open your
MCB809E data book, turn to page 17, and read the section
headed “Program Counter Relative.” Also read page 18,
the heading “LEAX/LEAY/LEAU/LEAS.” Finally, turn
to page 32 and read the summary of the 6809’s short and
long branch instructions.

LDX 8 o000
weax HX
[Tenceme /+x]
X Becomes gloo/
LA X

Loass A
with comtents &
#ro00/

LY #$Hoco
LEAY $72A,Y
[eacccrare 24A+Y]
Y BECOWMES SH4TAN
e Y
Le. &
with cmtnts o

$49AA

“WCREMENT X"

THINK.

LEAX |,X

DECREVENT X

THINK.

LEAX -1, X

TER X, Y

PsHs X
PuLs Y

[
Stacx]

D &

Turn to the MC6809E data book, page 17, and read the section
headed “Program Counter Relative.” Also turn to page 18, and
read the section headed “LEAX/LEAY/LEAU/LEAS.”
Finally, turn to page 32 and read the summary of the 6809’s
short and long branch instructions. Return to the tape when
you have completed the reading.

Let me start with the LEA instructions, which are easier to
use than to describe; you can be looking at page 18 asI talk.
LEA (Load Effective Address) is really no mystery, it’s just
a highly jargonized name for an old, familiar concept.
Here’s how LEA came clear to me: There exist no unique
increment or decrement instructions for the 16-bit X or Y
registers in the 6809. Considering how often I wanted to
move these registers forward or back in memory, I thought
this might be a serious deficiency in the 6809’s capability.
Sure, you know that there are automatic increment and
decrement modes, but these require loading or storing
information to get them to work. So I spent some time
cracking my brains over LEAX and LEAY.

I discovered that Increment X is actually LEAX 1,X...that
is, make X become X with an offset of 1. Decrement X,
then, must be LEAX -1,X. It seemed clumsy then, but not
now. Maybe these are alittle less easy to think of oruse than
a straightforward increment or decrement, but they are
many times more flexible. If LEAX 1,X makes X become
X+1, then LEAX 2,X makes X become X+2. You're no
longer limited to simple increments or decrements. LEAX -
40,X makes X equal X-40. LEAY 12345,Y makes Y equal
Y-+12345. That was the key. I began to understand that the
clumsy phrase “load effective address” was a jargon-filled
way of saying the same thing that “LET” says in BASIC.
Whereas BASIC would say LET Y = Y+150, the 6809
assembly language says LEAY 150,Y ... load Y with the
effective address 150+Y.

But there’s more. Not only can X=X+10 by writing
LEAX 10,X, but X canequal Y+10 by writing LEAX 10,Y..
.or Y can equal S-50 by writing LEAY -50,S ... or U can
equal X by writing LEAU 0,X. In fact, depending on your
requirements, the 6809 processor offers three different
ways of making one 16-bit register equal another: you've
got TFR X,Y. Then there’s PSHS X followed by PULS Y.
And then you can LEAX 0,Y.

Here’s more about Load Effective Address. You can use
the A, B or combination D accumulators as variable offsets.
For example, X can be made equal to A plus X by writing
LEAX A,X.

But by far the most versatile and powerful application of
the LEA instructions is in the writing of position
independent programs. In the programs I've presented so
far, I've always loaded the X or Y registers with specific
values. For example, in the Life program that was

Learning the

Load effective address

% What is the branching range of

BRA {and other branch
instructions)?
PC-128 to PC+127 (PC-488 to

PC+$7F),

What does LBRA mean?

Long branch always.

* What is the branching range of
LBRA (and other long branch

instructions)?

* PC-32768 to PL+32767 (PC-$500Q
to PC+STFFF).

* What addressing mode is EER
LODR?

Relative addressing.

¥ What addressing mode is LBEQ
L0OP?

Relative addressing.
* What does LER mean?

LER peans Load Effective

Address.

+ What is the effect of LEAX
1,07

¥ becomes X+,

% What is the effect of LEAX
$45, X7

¥ becomes X+$435,

* What is the effect of LEAX
1,Y?

X becomes Y+,

¥ What is the effect of LEAX
-5,Y?

X becomes Y"s-

What is the effect of LERY
12345, Y?

Y becoses Y+12343 (Y+$3839),

6809

Simple branches

*IfRis 4 and X is 4100,
what is the effect of LERX A, X?

¥ becomes X3, that is, X
becomes $1832.

*# If X = 51000, give the value
of ¥ after:
TFR X, Y

Y becomes $1080,

If X = 61008, give the value
of ¥ after:

PSHS X

PLS Y

Y becomes 1000,

*If ¥ = $1008, give the value
of ¥ after:
LEAY 8,X

Y becomes $1088.

¥ If X = %1018, give the value
of Y after:
LERY -1b,Y

Y becomes $1060.
What does LER mwean?

LEAR means Load Effective

Address.
¥ What does ®,PCR™ mean?

" PCR" means program counter
relative mode.

If the instruction LDX #ARITHI
is found at address %1089, and
label ARITH! points to $2000,
what is X after the instruction
is executed?

X points to $2008.

#If the instruction LDX
ARITHL, PCR is found at address
$1008, and label ARITHI points

to $2008, what is X after the
instruction is executed?

X points to $2000.

158 Lesson 18

completed in the last session, you remember that the X
register was pointed to atable of information by loading the
X register with the actual address of the table. I wrote
LDX #TABLE. But there’s another way, a position
independent way.

I might instead have written LEAX TABLE,PCR. That’s
LEAX TABLE,PCR. And that says “Load X with the
effective address calculated from the distance between the
present position of the program counter and the address of
the table.” In other words, I know the distance from here to
where I'm going. By giving that distance to the 6809, it can
calculate the resulting address, and give that result to the X
register.

No longer are you constrained to a fixed address. Instead of
demanding to know, “where is it?”, the 6809 need only ask
“how far is it from here?”. I'll get back to Load Effective
Address; in the meantime, just remember that when you
see LEAX, think LET X. Yousee LEAY 10,Y and you think
LET Y be 10 plus Y. Purists might want my head for that,
but I'll risk it. When you see LEA, think LET.

Among the other position-independent commands are the
branches. You've been using the branches since early onin
this course, but I've never given them any formal time. T'll
make up for that now.

Like the program counter relative instructions, the
branches are also based on “how far from here?”’ rather
than “where?”. In all, there are 62 variations of relative
branches, depending on how you think of them. Turn to
page 32 of the MC6809E data book. You’ll see the branch
instructions in four groups: simple, simple conditional,
signed conditional, and unsigned conditional. - Some
overlap, serving dual purposes. I'm going to describe the
short branches, but keep in mind that the long branches are
identical in principle and application. The only difference
is that the short branches reach a span of 256 bytes, and the
long branches reach a span of 65,536 bytes.

Simple branches are just that. When the instruction
decoder finds a simple, it follows the command, calculates
the new address, and hands it to the program counter.
These three are branch always (BRA), branch never (BRN)
and branch to subroutine (BSR). Two of these make sense;
but what about “branch never”? “Branch never” is one of
those delightful bizarrities of computer logic. “Branch
never’ exists as a default of the processor’s architecture.
All branches have what are called true and false versions;
branch always is the true version, so “branch never” is the
false version. Branch always makes the branch, very much
like the command JMP. “Branch never” continues with the
main program flow. But keep it in mind; it’s surprisingly
useful. Should you be doing critical timing where every
machine byte and clock cycle counts, remember that no
operation (NOP) uses one byte and 2 cycles; “branch
never’” has the effect of a NOP, but it uses two bytes and 3
cycles; and long “branch never” also has the effect of a
NOP, but it uses 4 bytes and 5 cycles.

LEAY OX

o\
O (X %7

LEAX TABLE, RCR

te) 296D |
e
[39ce |
34|
e
18LB
BYTES| A
:i'ib?'Q
2o
202
210/
2700

R,
zoFFi§

Mo \WhT
2 N encoate [
C AR
OFFSET = (905
PC. =270/

EA =37

S X: 29¢,¢C

BRANCH ALWAYS
(BRA)

BRACH N MINUS
(emd

<L

|2 TAPTY

LNk
[t Lo)

pe-t | $oz

ve-2 [Eea |/

PC-3 lagoc L/
PC-Y | emPA L

A
vz [ASLB |4F
Pt {523 | /!AZ\t
TR Lee i

P2

-1 | BE2 L
Pe | BT |
PL-3 E@A& -
P [CMPA |

Enough of the simple branches; on to the simple
conditional branches. These are changes of program flow
conceived of as direct responses to the condition codes.

1. Branch on minus and branch on plus are in
response to the state of the negative (N) flag.

2. Branch on equal and branch on not equal
are in response to the state of the zero (Z) flag.

3. Branch on overflow set and branch on
overflow clear respond to the state of the
overflow (V) flag.

4. Finally, branch on carry set and branch on
carry clear respond to the state of the carry (C)
flag.

Those eight conditional branches should make sense to
you, since you've used most of them in programming
already.

The signed and unsigned conditional branches take
account of not only the flags but also the type of arithmetic
being used, in order to produce a composite result and
make a branching decision. The signed conditional
branches assume that you are using signed arithmetic, that
is, where you are thinking in terms of positive and negative,
so that the most significant bit is important to the
calculation. There are three types of signed conditional
branch, arranged five ways:

1. Branch on greater than (BGT), and its
opposite, branch on less than or equal to
(BLE). Remember that in signed arithmetic,
$01 is greater than $FE, that is, 1 is greater
than 1.

2. The complementary instructions to the
previous ones are branch on greater than or
equal to (BGE) and branch on less than (BLT).

3. Signed branches also make use of the
familiar branch on equal (BEQ) and branch on
not equal (BNE).

4 and 5. The final two pairs of branches are
identical to the first to pairs, but are conceived
in reverse. At the end of this lesson, take the
time to examine the four tables at the bottom
of page 32 of the data booklet, and try to
clarify how the pair “branch on greater than”/
“branch on less than or equal to” is different in
conception from “branch on less than or equal
to”’/“branch on greater than”.

The remaining branch types are the unsigned conditional
branches. These are effectively identical to the previous

Conditional branches

* What does BSR mean?
BSR means Branch to subroutine.

What do mmesonics BGT, BGE,
BLT and BLE mean?

Branch on greater than, branch
on greater than or egual to,
branch on less than, and branch
on less than or egual to.

What do mnewonics BRA and BAN
wean?

Branch always and branch never.

In unsigned arithmetic, which
is the higher number, $7F or
$60?

$7F is a higher number than
400,

* In unsigned arithmetic, which
is the higher number, $AR or
$557

$A0 is a higher number than
$35.

% In signed arithmetic, which is
the greater number, $AA or $337

$35 (being positive) is greater
than $AR (being negative).

In signed arithmsetic, which is
the greater number, $FF or 087

$0@ is greater than $FF (-1).

* What specific kind of
instruction is BGT (branch on
greater than)?

BET is a signed conditional
branch.

* What specific kimd of
instruction is BHS (branch on
higher than or same as)?

BHS is an unsigned conditional
branch.

Learning the 6809 159

Selecting branches

tIf A contains $FF and is
compared to memory containing
$38, would the branch BGT be
taken or not? Why?

It would not be taken because
$FF (decisal -1) is less than
$08, and BT is a signed
conditional branch,

* If R contains $FF and is
compared to wmemory containing
$88, would the branch BHS be
taken or not? hy?

The branch would be taken
because $FF (decimal 255) is
higher than %88, and BHS is an
unsigned conditional branch,

% bhat addressing mode are BHS
and BET?

Relative addressing.

* What addressing wmode is JWP
$1234?

Extended addressing.

¥ phat addressing mode is JMP
($1234)7

Extended indirect addressing.

+ What does the mnemsonic LBLO
mean?

Long branch if lower than.
¥ What addressing mode is this?
Relative addressing.

¥hat is the branching range of
BLO?

The range is -128 ($8@) to +127
($7F) relative to the progras
counter.

* What is the branching range of
LBLO?

The range is -32768 ($8028) to

+32767 ($7TFFF), relative to the
program counter.

160 Lesson 18

ones, but negativeness or positiveness do not affect the
result. These branches are:

1. Branch on higher than (BHI), and its
opposite, branch on lower than or same as
(BLS). In unsigned arithmetic, $FE is greater
than $01, that is, 254 is greater than 1.

2. Branch on higher than or same as (BHS),
and its opposite, branch on lower than (BLO).

3. The familiar branch on equal (BEQ) and
branch on not equal (BNE) are also part of the
unsigned set of branches.

4 and 5. Finally, there are the inverse pairs
of the first sets of conditions. Again, examine
these tables at the end of the lesson.

So how do these all fit together? How do you choose among
simple conditional, signed conditional, and unsigned
conditional branches? Here’s how:

® [f you're using the flags directly, such as
with rotations, yes/no comparisons, etc., use
the simple conditional branches. If you're
thinking about the condition codes per se, then
you want to use simple conditional.

® If you're doing arithmetic, such as creating
mathematical subroutines, or if you're using
numbers transferred from BASIC, use signed
conditional branches. Real numbers are
positive and negative, so use signed conditional
branches when doing that kind of math.

® If you're making a series of value
comparisons or checking table entries, then use
the unsigned conditional branches. These are
similar to the simple conditional branches,
except they allow you a little more flexibility or
programming compactness.

Some experimenting will make the choices clear. I've got a
program I think you’ll like. Get your computer on and up in
Extended BASIC. When you're ready, type and enter this
BASIC line; follow in your book:

PCLEARS : PMODE4, 1:PCLS: PMODE4,5:PCLS: CLOADM: EXEC

Your computer will be ready and searching for an object
code program. It's coming up.

BEG,
BNE.

BHl,
BAS,

BLS

IF A=%2],
THEN..

FF

zZ
Zi

f—— =By ot

Program #28, an object code program. Turn on the power to
your Extended Color BASIC computer. When the cursor ap-
pears, type CLOAD and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, type EXEC
and press ENTER. The program will execute automatically. If an
1/0 error occurs, rewind to the program’s start and try again. For
severe loading problems, see the Appendix.

BASIC started by clearing an area of graphics memory, so
what you should be seeing is a clean high-resolution
graphics screen with a narrow, random-looking band of
colors walking down the screen from top to bottom. At the
same time, a continuous tone is coming from the
loudspeaker. The tone hiccups each time the colored band
moves down the screen.

Before you sigh “so what” to yourself, let me tell you what
you're looking at. The band of random color isn’t random at
all. It's the program. The program itself is being displayed
as if it were screen information. That shouldn’t be a
surprise, since memory is memory so far as the
microprocessor is concerned. But it can be disconcerting to
actually snoop into the program’s private memory lair.

Now to my point. This band of color is MOVING. The
program is producing a tone, then moving itself, erasing its
trail, and re-executing in a new position in memory.
Eventually, the loudspeaker will let out a strangled squawk
and probably return an “OK” to your screen, as the moving
program crashes into the un-writable BASIC ROM.

This is a completely position-independent program. When
you're ready, you can load the assembly source code and
have a look. I'll be back for the next lesson and a complete
walk-through of this program, and a re-explanation and
summary of the process of position-independent code.
Enjoy this one.

Program #29, an EDTASM+ program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

raaa Qalan ORG s1a0a
Q@11@ *
FFz@ @aalz@d SPORT EQu $FFz@
aanA @ai3@ DIFFER EQU LAST-FIRST
aal4@ =

22152 * DISABLE THE INTERRUPTS
ilgad 1A e QZ16d FIRST ORCC #E50

aaiva *

2@18@ % DPEN THE SDUND LATCH
1@az 86 3C @@l 3a LDA #$3C
1@@4 B7 FFE3 eaza sTA $FFZ3

Qa1 »

Learning the 6809

Position independence

% How many groups of branches
are there?
There are four
branches.

groups of

% What are the four kinds of
branches?

Simple branches, simple
conditional branches, unsigned
conditional branches, and signed
conditional branches.

* What is a position independent
progras?

A program designed to run

correctly no matier where it is
located in mewory.

161

Program #29

162

Lesson 18

1aa7
10e9
1aac
10@E
l1o@F
i@g11

1@14
117
ta1n

1aiD
1@&1F

lezz
1024
igz7
1a&w|
iazc
1ezE

lacF 2

le31

1@33
1e35
1238
ie3C
1Q3E
1@4@
1341

1@43

1045
1@47
1@43
1@4R
1@4F
1@51
ien2
1@53
1a56
1a58
1e59
1@SE
1@Sb
1@5E
106@

1261
1263
12635
1266
1068
126R

1@6R
1@eD
1@6F
1a71
1a73
1@75
1877
1@73
1@78
1@7D
1a7F
1@a81
1283
1285
1@87
12898
128
1@8D
1a8F

34

26

39

a7
FFC6E
a1

FH
FFCD

FFCS
FFC3
FFC@

c7
FFag

AR
aC D9
83 FFS36

aa

FE

65

FF
ez
3E
a8p eaiC
a6

FFz@

Fa
oz

E7

az
a6

FD
az

1F1iC
1316
1312
@DRE
asee
@403
aza1
Qoo
Ldrdeld
aaal
azds
a6ces
aRac
@Fig
1417
1B1E
2124
27&a
eD3@

xazzd
aaz3a
aRe4@
2az=5a
nazea
eaz7e
agcoa
apz3e
aazea
duiia
il gey=dry
QR332
Ra34d
A@3ISA
Q362
aa37a
a382
@a33@a
@aLQR
0410
BaLZG
Q@43
QR44Q
aR45@
aa46@
Q@470
da4spR
2430
xasaa
eas1e
Qeasza
2a53@
eesS4@
easse
aas56e
aas7e
easS8e
L.ltahe 1
600
ae61@
agez@
@ade3@
aRueLe
a2aesa
Q066
aec7a
aos8@
aa63a
ra7aa
aa71@
Qa7z@
aa73a
Qa74@
aa75@
Q@768
aa77e
aa7B@
aa73a
=l
aa81a
Qeesza
aas3a
Qass@
Qaasa
aas6a
ags7@e
agsse
Qas3&
Lldeldg
ea31a
@@32@
2a33a
aa34Q
aasse
aagv6d
@a37a
@aa38@
@33
@loe@
ai1o1@
alaca
@r1a3@
Qlas@

* SELECT VIDED ADDREGS

LDE #&Q7
LDX #EFFC6
VIDED sSTAR 5 X++
DECE
ENE VIDED
37A S$FFCD
*
SELECT GRAPHICS MODE
STR $FFCS
STA $FFC3
87TA SFFCa
*
* SELECT COLOR SET, MODE
LDA #4C7
STA SFFR2

*

ERASE PREVIOUS PROGRAM

ERASE LDE #DIFFER
LEAX FIRST, PCR
LEAX ~DIFFER, X
CLRA

KLEEN STA . X+
DECB
BNE KLEEN

*

* BEEP FOR ALL TO HEAR
BSR BEEP

*

» TRANSFER PROGRAM AHEAD
LDE #DIFFER
LEAX FIRST, PCR
LEAY LAST, PCR

LODP LDA o X
STA LY+
DECE
BNE LOBP

*

* AND BO TO MOVED PROBGRAM
ERA LAST

*

HEEP L.DA #$FF

REEEEP PSHS A
LDA #$3E
LERX WAVES, PCR

WAVER LDE A, X
ASLE
ASLE
8TE SPORT
ESR DELAY
DECA
BNE WAVER
PULS A
DECA
ENE REEEEPR
RTS

*

DELAY PSHS A
LDA #$06

DLODP DECR
BNE DLOOP
PULS A
RTS

»*

WAVES FDE $1F1C
FDE $1916
FDE $131@
FDE $@DOR
FDE $0806
FDE $0403
FDE sozal
FDB $0000
FDE $0Q0Q
FDE +QaQ1
FDE $0204
FDR $0608
FDE $QARC
FDR $QF 12
FDE $1417
FDE $1E1E
FDE $2124
FDE $&72A
FDE $=D3@

1@31
1293
1@33
1a37
1899
1a3B
1@3D
1@3F
lanl
12A3
1@AS
1@R7
10R3

Qaaaa TOTAL ERRORS

1eo@

@lasa
Qilaca
a1a7a
ale8a
@1@3@
ai1ea
aliie
arica
@113@
al1i14@
@a115@
a116@
@i117@
@a118@
@119
@aizo@
alzi@

LAST

FDE
FDE
FDE
FDE
FDH
FDE
FDE
FDR
FDER
FDE
FDB
FDE
FCE

EQuU

END

Learning the

3235
$37393
$3A3C
$3D3E
$3E3E
$3E3E
$3D3C
$3B39
3735
$333@
$ZEER
$2885
22

FIRST

Program #29

163

164 Lesson 18

Welcome back. During this session I want to review the
concept of position independent programming, and to take

you through the

self-moving,

position-independent

program from the end of the last lesson. Get that source

code loaded again.

problems, see the Appendix.

Program #29, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program’s start and try again. For severe loading

129 aaiae
kalie

FFZ@ QALZd

2RAA 20132

aai4e

aRa1se

1o@@ 1A Se Q2162
aai7a

2182

1a@2 86 3C aa19a
10d@4 B7 FFE3 xazee
ad21@

az2e

1@@a7 Cs a7 adz 30
1069 8k FFC& aoz4@
1@t A7 81 2ez50
12QE S5A *R26@
12@F 26 FB ae27e
111 EB7 FFCD Qazso
ag29e

@a3za

@14 07 FFCS a3
1@17 R7 FFC3 ea3ze
L1Q1A B7 FFCe e@3se
QAA34Q

ae3s5a

121D 86 c7 @360
1Q01F H7 FFaz ea37d
*a38@

20390

1022 C6 AR Qa4a2
1024 3@ 8C D9 20410
1ee7 3@ 89 FF356 @4z
1028 4F 00430

ORG s102Q

*

SPORT EQU SFF20

DIFFER EQU LAST-FIRST

*

DISABLE THE INTERRUPTS

FIRST ORCC #85Q

*

* OPEN THE SOUND LATCH
LDA #83C
sTA $FFE3

*

* SELECT VIDEO ADDRESS
LDE #$07
LDX NSFFCE

VIDEG STA , X4t
DECE
BNE VIDEOD
sTA $FFCD

*

SELECT GRAPHICS MODE
sTA $FFCS
sTA $FFC3
sTh SFFCO

*

SELECT COLDR SET, MODE
LDA #eC7
sSTA $FFz2

*

* ERASE PREVIOUS PROGRAM

ERRSE LDB #DIFFER
LEAX FIRST, PCR
LEAX ~DIFFER, X
CLRA

Learning the

The position-independent program
really isn't all Just tricks and

gimmicks, Its real purpose is
to wmake the wmachine code
"transportable". BASIC is

transportable; you don't need to
load it to a3 specific memory
location. You just load and
run. High-level languages have
to work that way, but machine
language had a hard time ...
until the 68@9.

% What is a position independent
progran?

A program designed to run
vorrectly no matter where it is
located in memory.

165

Program #29 reprise

166

Lesson 19

122C
122E
1a2F

1@31

1@33
1035
1238
1@3C
1@83E
1a4@
i41

1043

1045
1047
1043
1@4B
1@4F
1@51
1asez
1a53
1a56
ias8

15K
1@5D
1@5E
1e6@

1061
1263
1065
1066
1268
186R

1@6B
1@6D
1Q6F
1a7i
1@73
1475
1277
1@79
1Q7E
1@7D
127F
1281
1283
1@85
1Q87
1@89
1@8E
1aaD
1@8F
1@91
1093
133
1237
1@93
1 @3k
1@9D
1@3F
1@AL
10A3
1@AS
18R7
12A3

Qe TOTAL ERRORS

A7

=43

ac ce
8D QQ6E

an aeic

FF2@

F4

a2

E7

a2
@6

1ee@

Q@Qs44LQ
a45a
@a46Q
Q47
2a4B@
Qa49@
ea500
@es51Q
oas52e
ae33e
@342
eass5e

2560
oes7e

. s@nee

2233

. AP60e

(3]
ea6ze
aes3@
aa64@
28650
e&6R
eee7e
avs8e
269
ea7ee
a@71@
ea7eé
@730
oa74@
aa75e
e276@
20770
aa78@
aa79@
a8
oasie@
aosza
a@a3e
R84@
oase
R86R
aes7e
ep8se
an83Q
aa3ee
2912
e9ce
ee93e
20940
2asse
ea9ce
@e@37@
Qa38@
Q930
Q100
il
el1aze
ale3e
a1@4@
a125@
ai06@
ai1e7@
Qa128@
ai1a3e
@a110@
@2i111@
Qa11z@
21130
@114
2115@
alie@
a1i17@
@118@
al113@
@12Q@
a1z1@

KLEEN STA , X+
DECB
BNE KLEEN
*
+ BEEP FOR ALL TO HEAR
BSR BEEP
*
TRANSFER PROGRAM AHEAD
L.DB #DIFFER
LEAX FIRST, PCR
LEAY LAST, PCR
LOOP LbA . X+
“BTA s Y+
. DECH
BNE Loop
*
#+ AND BO TO MOVED PROGRAM
.. .BRA LAST
*
BEER - LDR HEFF
REBEEPR . PSHS A
? DA #93E
LEAX WAVES, PCR
WAVER LDE- A, X
ASLEB
ASLE
STh SPORT
BSR DELAY
DECA
ENE WAVER
PULS A
DECR
BNE REBEEP
RTS
*
DELAY PEHS A
LDA HE06
pDLOOP DECA
ENE DLOOP
PULS A
RTS
*
WAVES FDE $1F1C
FDE $1916
FDE 1310
FDH $@QDoB
FDE 2826
FDE $Q4@3
FDE saz1
FDE @002
FDE $QRQR
FDE so0a1
FDE sacds
FDE $0608
FDE $QAAC
FDE SAFIZ
FDE $1417
FDE $1E1E
FDE $2124
FDR $272A
FDE $2Dh3@
FDE $3235
FDE $3739
FDE $3A3C
FDRE $3D3E
FDE $3E3E
FDE $3E3E
FDB $3D3C
FDR $3B39
FDR $3735
FDE 3330
FDB $2ECHR
FDER 2825
FCR o2
*
LAST EQU *
*
’ END FIRST

AT QU Bioco
DiFFee EQU LAST—FeST

LEAX FIRST, RR

LockTE ASSEMBLY
L LEAX -$D7, PCR

aconre [EFEETTION]

L X = PC(-8D9)
LEAX - DIFFER X

Loae {resErB)
b Leax - BAA X

EXECUTION

CALCLLATE

Ly X= X-$AA

BEEP 1045

DELRY 1261

DIFFER @@AR

DLOOP 1065

ERASE 1@22

FIRST 1@o@

KLEEN 1@cC

LAST 1@AA

Loop 1830

REBEEP 1047

SPORT FF&@

VIDED 1@eC

WAVER 1@4F

WAVES 1@6B

The opening lines of the source code should look familiar to
you. Interrupts are disabled to keep the tone pure; the
sound latch is opened (recall that process from the Morse
Code routine); the video address $1000 is selected via the
SAM registers; high-resolution color graphics, color set,
and detail level are selected through an address port. Up to

that point, everything is as it has been.

The real differences begin with the routine labeled
ERASE. The value identified as DIFFER has been
calculated by the assembler from my labels LAST minus
FIRST. The first byte of the program I labeled FIRST, and
one byte after the last byte I labeled LAST. At the start of
the assembly listing, I have the assembler calculate LAST
minus FIRST... whichis, of course, the length of the entire
program. So accumulator B is loaded with the length of the
program.

There follow two significant instructions . . .

LEAX FIRST,PCR
LEAX -DIFFER, X

LEAX FIRST,PCR requests that the assembler compute
the distance from the program counter to the label FIRST,
and make the resultant address available for use by the X
register. In other words, after LEAX FIRST,PCR, the X
register points to the beginning of the program. Then
comes the instruction LEAX -DIFFER,X. That command
instructs the processor to let X equal the present X value
minus the value DIFFER. So the effect of those two
instructions is to point the X register to a place in memory
one program length before the program. Let me go through
that one more time. LEAX FIRST,PCRis a program-counter
relative instruction that calculates the distance between
the current position of the program counter and the label
FIRST, and assigns the resultant address to register X.
Using this technique, X ends up pointing to the start of the
program, without ever knowing what absolute address that
start actually is until now. After that,-

LEAX -DIFFER,X provides the X register with the effective
address X offset by -DIFFER. Let X equal X minus
DIFFER. X now points to a location in memory DIFFER
places back from its previous position, still without ever
knowing the absolute address beforehand. Again:
LEAX FIRST,PCR. Let X point to the address FIRST
places from the program counter. LEAX -DIFFER,X. Let X
point to the address ~DIFFER places away from its
previous position. No specific addresses involved . . .
position independent . . . program-counter relative.

Labled offsets

% How many groups of branches
are there?

There are four
branches,

groups of

What are the four kinds of
branches?

Simple branches, simple
condifional branches, unsigned
conditional branches, and signed
conditional branches,

* What 1s the branching range of
the branch instructions?

The range is -128 {%88) to +1&7
{$7F) relative to the program

counter,

What is the branching range of
the long branch instructions?

The range is -35768 ($8800) to
+32767 ($7FFF), relative to the
progras counter,

* What addressing mode are all
the branches, both long and
short?

Relative addressing.

* Relative addressing is
relative to what?

The progras counter,

+ $hat does ",PCR" mean?
Progras counter relative.
* What does LEA mean?

LEA means Load
Address.

Effective

Learning the 6809 167

Relocating a program

¢ What is the effect of LEAX
1, X?

1 becomes X+i.

+ What is the effect of LEAX
$43, X7

¥ becomes X+$43,

* What is the effect of LEARX
1,Y?

X becomes Y+l.

yhat is the effect of LERX
-5,¥?

% becomes Y-S,

¥ IfAiss32 and X iz $1009,
what is the effect of LEAY R,X?

X becomes X+, that is, X
becomes $1@3c.

% What is the effect of LEAX
1,7

¥ becomes X+i,

@hat 15 the effect of LEAX
-1,%?

X becowes K-i.

£ The BB@9 processor provides an
INCR comsand. What is the
squivalent of INCX, a fictitious
command?

LEAX 1,X

*+ The 6829 provides a DECA

command, What is the eguivaient
of DECX, a fictitious command?

LEAX -1,X

+ If the first byte of a program
is labeled START, what is the
effect of LERX START,PCR if the
program is ORGed af $108@7

X becowes $1008,

168 Lesson 19

The next four instructions fill up the memory area from —
DIFFER,X to FIRST with zeroes; the B register contains
DIFFER, the total number of bytes in the program. That is,
ablock of memory as long as the program from-DIFFER, X
to FIRST will be cleared to zero.

Following those contortions is a relative branch to the
subroutine BEEP. I'll get back to BEEP in a minute.

After the branch to and back from BEEP, the B register is
once more loaded with the program’s length. Following that

LEAX FIRST,PCR
LEAY LAST, PCR

Again using the program counter relative technique, the X
register is pointed to the beginning of the program, and the
Y register is pointed to the byte after the last byte in the
program. By means of a standard load-and-store loop —
which should be tiresomely familiar by now — the
information pointed to by X is transferred to memory
pointed to by Y, and both memory pointers are
incremented by one. The loop continues until B is
decremented to zero. In other words, a copy of the program
is made immediately following the end of itself.

The final instruction is the grabber. The program is told to
execute a branch to the label LAST. The LAST has
become the FIRST. The program, having just been copied,
is born again and seemingly begins anew in a fresh area of
memory. It once again sets up the video and sound
parameters — a redundant act I included for effect. At this
point, the reason for the ERASE routine presented earlier
should become clear. ERASE causes the previous program
to be cleared out of memory — the program hides its own
trail as it beeps and copies itself.

So what you see is a screen full of memory, and revealed on
that screen you are watching is a program that beeps,
duplicates itself in a new location, branches into its new
self, and eradicates its old self.

Chances are you wouldn’t ever need to write a program like
this. But you might want to write something like the BEEP
subroutine, a routine that you can stuff anywhere you like in
memory. Have a look at it.

Part of its structure should be familiar. The A registeris set
up as the length of the beep, and there are values being sent
out the sound port to the television speaker. But there’s
something new. LEAX WAVES,PCR (again using program-
counter relative addressing) points the X register to a table
labeled WAVES. So what’s this table?

It might look at first like a table of addresses. Itisn’t. It's a
63-byte reference table. .. these are bytes, not addresses. I
just wanted to save myself some typing by compressing
them the way you see them. So you can read this table as a

LOB #OFFER.
LEAX FIRST, PCR.
LEAY LAST,PCR

1,897

i

IPAVONT

M

HZE =

9.3
N
%D

L L

@B2~Zorp

¥

t

'
N
2

{

t

'

i

.

+
¥

&l
2
¥ 4
el
®

il
LIRS

(mzore [;rc\on:]

EXECUTE.
T
clowe-

ST’ SPORT

group of 63 bytes: $1F $1C $19 $16 $13 $10 $0D, etc.
Trans'ated back into the form in which I created them, they
read like this:

-BpR3p13
.0995276
.1983681
.2952265
.3891352
4791557
.5643887
.6439825

... and so forth. It’s actually a table of mathematical sines,
made positive and multiplied by a constant so thatthe table
falls into the range of positive integers 0 te 63. The reason
I've done this is because the Color Computer contains a 6-
bit digital-to-analog converter, a circuit which converts a 6-
bit binary number into an equivalent voltage. That voltage
can be used for a variety of purposes, including the
production of sound.

Idescribed this briefly when you were exploring the Morse

Code examples. This time you’ll be putting it to use. Move

back now to the BEEP routine itself. Notice that beginning
with the third instruction, the BEEP program loads the A
accumulator with $3E, points the X register to that table,
and then loads the value found at X indexed by A into the B
accumulator. The value is shifted to the left (from the low 6
bits to the high 6 bits, where the computer’s digital-to-
analog converter output happensto be wired). That value is
then stored at SPORT, the sound output address in the
computer. A brief delay is made, then the next element in
the table is acquired and output to the sound port, until all
63 elements have been used up. The routine then loops
until 255 repetitions of the table have been output.

The sine wave is the simplest of all musical sourds. By
creating a series of numerical values which outline a sine-
shaped wave and subsequently putting those values
through the computer’s 6-bit converter, an equivalent
sound wave js produced through the loudspeaker. It
sounds like the sine wave it represents.

Take a break now, and make some changes in the
subroutine. You can assemble and use the BEEP
subroutine separately, if you like. If you use it separately,
remember to turn off interrupts by using ORCC #$50, and
also to turn on the sound latch by storing $3C at memory
address $FF23.1'd like you to play around with the length of
the beep (found at line 630 being loaded into the A
register), with the frequency of the beep (found in the delay
loop at line 800), and with the quality of the sound (by
changing the values in the wavetable beginning at line 860).
When you're comfortable with how these routines work,
thoroughly review both this lesson and the previous one. I'll
be back with a summary of position independent
programming, and then Tll finish up this session by
introducing the remaining 6809E instructions.

Learning the

Waveform table
If the first byte of a program
is labeled START, what is the

gffect of LEAX START,PCR if the
progras is ORGed at $1234?

X becomes $1234.

* If the first byte of a progras
is labeled START, what is the
effect of LERX START,PCR if the
progras is ORBed at $ARAR?

X becomes $AARA.

+ What addressing wode is LEAX
WAVES, PCR?

Program-counter relative.
¥ What is a pseudo-op?

fAn instruction to the
assembler,

+ What pseudo-op places a single
byte in mewory?

FCB.

What pseudo—op places two
consecutive bytes in memory?

FDB.

* What pseudo-op places an ASCII
string of characters in wemory?

FCC.

¥ Does the Color Computer have a
digital-to-analog converter?

Yes.

* A digital-to-analog converter
converts what to what?

A binary number to an equivalent
voitage.

¥ At what memory location is the
Lolor Computer's digital-
to-analeg converter found?

At iocation $FF22.

6809 e

Branch ranges; MUL

¥ How many bits can be sent to
the Color Compuler’s digital-
to-analog converter?

6 bits.

What is the range (in binary,
hew and decimall of the Color
Computer's digital-to-analog
converter?

Binary 000002 to 1ii1li;
hexadecimal $8Q to $3F; decimal
to B4,

* The Color Computer's
gigital-to-analog converter
ranges Tfrom @ to 3 volts,
divided info &% steps. lero
output iz @/64thz, Ffull output
is b4/B4thsy that is, it has a
step size or resolution of
1/64th of the output. If CODGGR
is sent to the digital-to-analog
converter, what is the cutput?

Q00008 is @/64ths, or @ volis,

tIf 111131 is sent to the
digital-to-analog converter,
what is the ocutput?

111111 is b3/b4ths, or 4.921875
valts,

¥ If 101010 is sent to the
digital-tc-analog converter,
what is the output?

121010 1s 42/6Aths, or 3.28125
voits.

1f all the values from "OOGER
to 111111 and back to GOQBRD are
sent to the digital-to-analog
converter, what wili a graph of
the final voitage output look
iike? '

A triangle.

* If the Color Computer's
digital-to-analog converter were
7 hbitz instead of six, what
would be the step size (the

resolubion) ?

1/128th of the output.

170 Lesson 19

Experiment with the length, pitch and sound quality of the beep
in this program. The length of the beep is loaded into the A regi-
ster in line 630 of Program 29. The frequency of the beep is
found in the delay loop in line 800. The wavetable begins at line
860. When you are confident you understand the application of
these features, return to the tape.

Position independent programming, then, is the creation of
machine language in a way that allows the final assembled
binary program to execute anywhere in memory. This
quality of position independence is achieved by making all
memory pointers, program branches and subroutines
relative to the position of the program counter. In that way,
the processor never needs to know “where”, but only needs
to know “how far from here”.

Among the commands used with position independent
programming are the three dozen variants of the branch
(with its 256-byte range) and the long branch (with its
65,536-byte range). Branches come in simple form, where
they are always obeyed; in simple conditional form, where
their actions depend on the state of specific condition
codes; in unsigned conditional form for “higher” and
“lower” judgments; and in signed conditonal form for
“greater than” and “less than” judgments in with positive
and negative arithmetic.

The other commands to achieve positionindependence are
the LEA, orload effective address, group. When used with
in program-counter relative form, 16-bit registers can be
pointed to any location in memory by virtue of that
location’s position relative to the current position of the
program counter. It’s almost mandatory to use an editor/
assembler and labels to do this. For the experience, you
might try hand-assembling a few LEAX instructions in the
program-counter-relative mode.

The advantages of position independence are obvious; the
disadvantages are a slight increase in the amount of
programming code required, and a loss in execution speed.
For fast action games and high speed — where position
independence is hardly necessary anyway — compact,
address-specific programming is adequate and desirable.
For utility programs, mathematical subroutines, and other
semi-permanent programs {especially those which will be
used with other machine-language software), position
independence is virtually required.

Only a few commands remain in the 6809 instruction set.
Some you’ve come across, and some are brand new to this
course. One you've seen is multiply, MUL. When MUL is
executed, the contents of the A accumulator is multiplied
by the contents of the B accumulator, and the result is
placed in the combined D accumulator. This is an unsigned
multiply, meaning the full 8 by 8 bit multiplication is

WOLTIR

B K=

s

<]

X

ars&qu

W

ZZZZLL...

%O

@LOHANQ.

’W wiTH (A“?By

7]

(apca #%$¢3)
(¢ Frae 1S sz-r)

il
s
A

NOP, EXG, ABX, SBC, TST, BIT

completed without reference to it being positive or
negative. Positive integers are assumed for this
multiplication. Although MUL takes 11 machine cycles (it is
the longest 6809 instruction), it saves the several steps
required by other processors, where multiplication is done
by many succeeding steps of shifting and adding.

Another you've already seen is no operation, mnemonic
NOP. The NOP has several uses, most frequently as a time-
waster for sound, input/output, communication, or other
timing loops. The NOP takes two cycles to execute, during
which no other aspect of the procesors’s operation is
affected.

Another instruction which you haven’t specifically used,
but is in a familiar family, is exchange, EXG. Like the
transfer (TFR) command, EXG uses an opcode and a
postbyte to describe the registers needed. TFR replicates
the value in the source register into the destinationregister.
EXG swaps the values in the two registers. EXG is useful
for organizing A and B registers properly in the 16-bit D
register; for placing information into the more flexible X
register; for temporarily swapping stacks; and so forth.

Since I just mentioned the X register as being more
flexible, I'll present the command ABX. ABX instructs the
processor to add the value of the B register to the X
register. This inherent instruction is very fast, and acts as a
kind of fixed increment for X. If X has to move through a
high resolution graphics screen hex $80 bytes at a time, for
example, it would be most efficient to set B to $80 and
execute ABX. Especially inside a loop, ABX would bump the
X pointer down to the next graphics screen line in a short
time.

Two complementary instructions are add with carry (ADC)
and subtract with borrow (SBC). These are standard add
and subtract commands, except that the carry/borrow flag
is made a part of the computation. I'll talk more about ADC
and SBC when I get to the representation of numbers in a
later lesson.

TST and BIT are related quick testing instructions. BIT
causes the processor to AND the value of an accumulator
with a memory location. Certain flags are affected, but the
original contents of both accumulator and memory remain
unchanged. BIT is particularly useful for locating numbers
or ASCII strings in memory, since the value in the
accumulator isn’t affected as it moves and tests byte after
byte.

TST is similar to BIT, but is oriented toward signed
numbers. TST tests the value of the operand — which can
be a memory location or either accumulator — and sets the
negative and zero flags according to what it finds. Signed
conditional branches (BGT, BLE, BGE, BLT, BEQ and
BNE) are usually placed after the TST.

* If the {Color Computerts
digital-to-analog converter were
8 bits instead of six, what
would be the step size (the
resolution)?

1/256th of the ocutput.

* ¥hat is the step size (the
resolution) of the Color
Computer’s digitai-to-analog
converter?

1/B65th of the output.

* What is the highest resolution
of this table of sine values for
the Color Computer's
digital-te-analog converter?

1/64th of the sine wave shape.

*# The following guestions refer

ta the remaining 66889
instructions introduced in
Lesson 19.

% What is the action of MAL?

The contents of the R
accumulator is muitiplied by the
contents of the R accumulator,
and the result is placed in the
D accumulator,

* Is the result of MUL signed or
unsigned?

Unsigned.

¥ If A containg $88 and R
contains $C2, what is the result
of MUL?

D contains %0618,

If B contains ¢35 and B
contains $AA, what is the result
of MIL?

D contains $3872.

*If A contains $FF and B
contains $FF, what is the result

of ML?

D contains $FE@L.

Learning the 6809 171

SEX, DAA

% What is the result after NOP?

No change to any vegisters or
wewory locations; no operation
fakes place.

#[f A contains P8 and B
contains $02, what is the resull
of EX6 A, B?

fi contains $C2 and B contains
$38.

% If X contains $FFEE and Y
contains %Q1C0, what is the
result of EXG X,Y?

¥ contains $Q1CD and Y contains
$FFEE.

*# If % containg $QICD and B
contains $33, what is fhe resuli
of ABR?

¥ contains $6200.

If X contains $FFFF and B
contains $@B, what is the result
of ABX?

¥ contains $0QQ7,

+ If A contains $18 and thne
carry flag is set, what is the
result of ADCR #3187

$10+8104L = 821

If B contains $@1, what is the
result of SEX?

D contains $0081.

¥ If B contains $FF, what is the
result of SEX?

D contains $FFFF,

If B contains $8@, what is the
result of SEX?

D contains %FFBAQ,

* A contains $43 and ADDA $99 is
executed, What is the resuylt
after DAA?

A contains $42 and the carry
flag is set.

172 Lesson 19

The next instruction also has to do with signed arithmetic.
Called sign extend (SEX), it results in the sign of the B
accumulator being extended into the A accumulator for a
complete, signed 16-bit number in the D register. In other
words, if B is a positive number, A will become $00. If B is
$77, for example, after SEX, the D register will be $0077.
On the other hand, if B is a negative number, A will become
$FF. That is, if B is $FC (-4 decimal in 8-bit signed
arithmetic), a negative number, its sign is extended so that
the resulting D register is $FFFC — still -4 decimal in 16-
bit arithmetic. If that isn’t clear, count backwards, firstin 8
bits and thenin 16 bits. Starting with $00, $FF is—~1, $FE is—
2, $FD is -3, $FC is —4. Now start with $0000, a 16-bit
number. $FFFFis—1, $FFFEis—2,$FFFDis-3,$FFFCis-4.
Sign extend, mnemonic SEX, sees to it that an 8-bit signed
value is properly transformed into a 16-bit signed value.

All that’s left is DAA, the decimal addition adjustment.
Microprocessors are working in binary, base 2, and that
operation is represented by hexidecimal, base 16. As
you've discovered, none of this fits very well with base 10,
the decimal system. Some processors contain a decimal
mode of operation, where adjustments are made
automatically after every computation to compensate for
the base 10 system. In other words, no number larger than
binary 1001 is allowed in a nybble.

Sadly, decimal mode is is one of the few desirable features
not found in the 6809 processor. In its place is the
instruction decimal addition adjust, or DAA. When
executed after and ADD or ADC, the values in the
accumulator are converted from true binary mode to a
decimal version called binary-coded-decimal, or BCD. The
nybbles of the byte are adiusted, and the carry flag set if
necessary, to turn the binary result into BCD.

For example, if I were to LDA #$77 and then ADDA #$77
(note both these are binary-coded-decimal numbers), the
binary result would be hex #$EE. Although I want these to
be decimal representations, the processor treats them as if
they were binary. If I follow those commands with DAA,
however, a series of tests and corrections are made. $54 is
left in the accumulator and the carry flag is set. That’s the
number 154 in BCD, the sum of 77 BCD plus 77 BCD.
Review the summary of DAA on page 43 of your
EDTASM++ manual; there will be more on this later.

By the way, it’s especially with an operation such as DAA
that the command ADC comes into play. The carry
generated by DAA in the previous example has to be taken
into consideration when doing arithmetic with larger
numbers, Keep that in mind, as I'll be covering that in
Representation of Numbers, the next lesson.

EXTen,

A= DoN'T CARE.
EI] B=$77 (681 H77)
O Sex

D=323877
(le-BIT $77)

5 oo e

B= SFC (8-Br-4)

D= $FFFC

! TES).
8]

A=$AS
BITA #3599

A [ToTedaT]
A

weme, [opldddd]
0
7\'\1 'é
A=PA3
BITA 4550
A
Ao [IEEEE
NP [dolofololeleld

Mol

pre

e
¥ N(X“’ﬂﬂé“‘

INTEGERS

20642
rayl

L]
FLOATING POINT
N BRERS

2.4/
0BH]

213, 0599

FEACTIONS
&%
3t

32.

3%
S

IRRATIONAL
/W/M/BEXﬁ

3. /415926 .o

L

7%%#4& |

siN (1)
- TAN (S)

DIFFERENT
APMIBER. SYE

10/00 70,
/73274
slizée?79,

BT L,

.

What is a number? I've been wanting to ask you that
question at just about every session, but I think now’s the
time for it. What is a number?

No matter what comes to mind in response to the question,
it’s probably right, and that means the computer has to deal
with it. Somehow, the binary data has got to be arranged to
handle all those conceptions. Numbers might include . . .

® integers both positive and negative.
@ floating-point decimal numbers
® fractions

@ irrational numbers and transcendental
functions

® different number systems

® identification or code numbers
@ scales or scientific ranges

€® money

® very large or very small numbers

Some of these — like floating-point numbers and money —
are just slight conceptual variations. Others — like
transcendental numbers and different number base
systems — are strikingly dissimilar.

Learning the details of handling all these different numbers
in assembly language would require a separate course, so
I'm going to limit the discussion to simple numbers. Once
you've got this session down, you'll be ready for all the rest.
You already understand positive and negative integers, so I
mean to go one step further — to floating point numbers
and how they are represented in binary notation.

Signed and unsigned integers
have been the limit for the
calculation and conversion
examples so far. Numbers are
mind-bogglingly more than that,
and binary format has to obe
forced to hamdle them all.
Floating-point notation — that
is, representation of decimal
nusbers —— is far and away the
most obscure topic in assembly
language. Even to the
experienced, it comes only with
irritation,

What is an integer?

A whole number with no
fractional part.

How does the 68089 represent
signed integers?

By using the wmost significant
bit (the leftmost bil) of a
number.

* What is the sign for positive
and negative?

R zero in the most significant
bit is positive; a one in the
most significant bit is
negative.

Learning the 6809 173

Accuracy and range
% Show 38FC2 in pinary; iz it
positive o nepative? Why?
$8FC2 ic t@@d 111l (1% @deie,
and it is negative because the
most significant bit is a one,

#What iz a ivating-point

number?

R number with a fractional
oart,

Lan 326 be a Floating-point

nuisber? Why?

Yes, because the fractional part
is zerc {.00QQ08Q....)

What is the accuracy of the
Color Computer?

9 significant digits.
* What 15 a significant digit?

Tha part of the actual number
used in storage or computation.

* Yhat are the signficant digits
of 123,456,789,876,543,218 on
the Color Computer?

The most significant digits are
123436789,

* How would 123, 436,789,876, -
543,21@ be displayed on the
Color Computer?

it would be displaved
1. 2345679E+17.

* What does the E mean in
1, 2345679E+1T?

E means exporent, that is, the
power of 18 by which the number
is multiplied; in other words,
1.2345679 times 1@ to the 17th.

*What s 1@ to the 1{7th
1717

100, 007, 200, 000, 030, 208

174 Lesson 20

“Floating point” is jargon for numbers in complete form —
positive or negative numbers, with integer and fractional
portions. All numbers in the Color Computer’s BASIC are
stored as floating point numbers, whether they look like
integers or not. The number 10, for example, is actually
thought of as 10.0000000 with the computer’s internal
hexadecimal representation $84 20 00 00 00. One
million is thought of as 1000000.00, with the internal
hexadecimal representation of $94 74 24 00 00. 0.1
becomes 0.1000600000 and is represented by hexadecimal
$7D 4C CC CC CD, and one-millionth is ¢.0000010 and
is stored as hexadecimal $6D 06 37 BD 06.

Don’t expect these hexadecimal patterns to make any
sense as I read them to you. They are, in fact, five-byte
groupings capable of representing any number from —
170,141,173,000,000,000,000,000,000,000,000,000,000
(negative 170 trillion, 141 billion, 173 million billion billion
billion) to +170,141,173,000,000,000,000,000,000,000,
000,000,000. The Color BASIC language can handle these
with nine significant digits of accuracy — that is, only the
first nine digits are used for the actual computations. This
is excellent accuracy (far better than my old 4-digit slide
rule), but not always enough for the modern age of high
technology, with its measurements of astronomical
vastness or molecular smallness. By understanding how
floating point numbers are represented, it is possible to
extend the accuracy of numbers to as many digits as you
need. No matter how fast the machine’s speed, handling
such large numbers will take time; but handling large and
small numbers will be possible — even via BASIC.

Now to what those numbers mean. The principle is, once
again, disarmingly simple. Let me start the explanation as if
you were using a decimal computer instead of a binary one.
Take the decimal number 1234567.89. Now say this
decimal computer you own has a precision of 10 significant
digits. The number is really 1234567.830 for your
computer. And of course this decimal computer doesn’t
have a decimal point inside the number — it can only store
information on where the decimal point is. It won’t actually
put one there except for display.

Sothe numberis 1234567.89, meaning the decimal point is
between the seventh and eight positions. So by storing 7
followed hy 1234567890, you can say that the number
stored in your special decimal computer is 1234567 point
89, with the trailing zero dropped. Simply by changing your
descriptive information you can change the number’s
power of 10. By storing 12 followed by 1234567890, you
automatically know that the number you want is
123,456,789,000. By storing 1 plus 1234567890, the
number becomes 1.23456789.

There’s no difference in the Color Computer’s
representation of numbers from the description of this
imaginary decimal computer. The five bytes used to
describe a floating point number on the Color Computer
are in binary. That’s the key. To represent one million as

S8, 000-TH-6/02

SCALES R RANGES

JOENTIFRCATRON
MUMBERS

(603) 990 - SIS/

VT

222 — 242°

& — //0db

SS»FL
Z20Hy - 20 kHe

<€ My r,”Q{
DECIMAL
CoMPUTER.

1239456787

SOREP AS
F7 123456789 F

Rzvizens

g7

(2345C7898
M e S
HMAGSTISSA

(107) (.1234567879)

BT /23457894

/2

2

/234547888
/23 45678978

- /23 4507898345,

/234567892
L. 239567 YE

$94 74 24 00 00 is to store it with one descriptive byte
telling where the point is, plus a string of binary digits.
Here's a case where hexadecimal is pretty useless. Binary is
the only solution to seeing it.

The exponent byte comes first, which is a power of 2 —
essentially a description of where the decimal point goes. In
this case, I'm going to coin a term . . . I think this should be
called a binaral point, since this is binary notation. $80 is
the central value around which the binaral point swings.
From $81 to $FF represents from 1 to 127 places to the left
of the binaral point — numbers greater than one; from $01
to $7F represents from 127 to 1 places to the right of the
point.

Back to the number one million, stored as
$94 74 24 00 00. $80 is the pivot point, so $94 minus
$80 is $14. That means that this number has hex $14 —
decimal 20 — digits to the left of the binaral point. I'll write
the remainder of this in binary:

PIL1 P10p PR1P P1OP 0PRP 00PP POPP POAP

The leftmost bit of these 32 digits is used as the sign bit; as
usual, 0 is the positive sign and 1 is the negative sign. In
numerical terms (exactly why is difficult to explain but will
become clear with experience), this bitis assumedtobeal
for calculation purposes. That is, since any number’s got to
have some digit to multiply by other than zero, atleast one 1
will appear . . . and that’s the case no matter whether the
number is positive or negative. So whether the sign bit is 1
or 0, this bit is included in the calculation as if it were a 1.
Turning back to the string of binary digits, it becomes
(please follow along in the book now):

1111 p1pp P18 100 PPOQ DOPY PPAR 0HBP

Since the point is after the 20th position (hex $14), count
over from the left. The left, for one of the rare times in
computer terms, is called the first rather than the zeroeth
position. Putting the point in place makes the number
read:

1111p100001001080000 . 300000000000

Now you do one of two things. The first option is to sum the
powers of two to calculate the result, starting from just left
of the point. Zero times 240 plus 0 times 241 plus 0 times
242, keeping the sum as you move on up to 1 times 2419.
That’s actually the sum of 2419 + 2418 + 2417 + 2416 +
2414 + 249 + 246, which is 1,000,000.

Or as an alternative you can break the binary into four-bit
groups, again starting from the immediate left of the point,
and convert those to hexadecimal: it becomes $F4240.
According to my hexadecimal calculator, $F4240 is,
indeed, one million in decimal.

I'm going to take you through a few of these for practice. Let
me hand.you just any five-byte group that comes to mind as
I putthislessontogether. I'll keep it positive and large until

Learning the

Exponent byte

* What is & fo the zeroeth

21 ?

i {any number to the zerc
is 1k

power

* What is 2 to the lst (2+1)?
£

% What is £ to the ong (24217

¥ What iz £ to the 3rd (2¢31?
8

¥ Bhat is 2 to the 16th (2+16)7
£3536

¥ What is 248 plus &+1 plus o#2
plus 2¢3?

1424448, or 15,

* dhat is 2¢Q pius 2+l plus 2+
.vo up to 24137

14244 ... +32768, or 63535,

+ In float ing-point binary
notation, what is the first
byte?

The exponent byte.

If the exponent byte is $99,
what does it indicate?

It indicates 2 to the power 613
(hex) or 2425 {decimall.

* If the exponent bvte
what does it indicate?

is $81,

it irdicates 2 to the power $@i,
or 2,

* What are the four Dbytes
following the exponent byte
called?

The mantissa.

6809 s

Placing the point

*# If the four bytes are %30 80
B2 08, what is the binary
sant issa?

The binary wantissa is 0101 {21@
0000 GO0 Q00 C0OC Q0GR 000,

¥ Which bit is the sign bit?

The ieftmost bit is the sign
bit.

* If the mantissa is $5R 00 @@
23, what is its sign?

The sign of €58 22 0Q @@ is
positive {the leftmost bit is a
28roe).

+ What is a "normalized"

mantissa?

A mantissa in which the lefimost
bit has been set to a one after
its sign is Hnown.

*# If the (normalized) mantissa
is 1101 10210 2000 4000 C0OD G002
2800 2aD@ and the exponent byte
is $88, place the point.

1101 1010, Q000 2002 8082 GO
ax0e ao0n

+ What is this number?

ZA1 4 213+ 20h + 206 + 4] =
218

If the (normalized) mantissa
is 1181 1010 GOOP 0AQ0 3000 B00Q
Q800 9280 and the expoment byte
is $91, place the point.

1101 1010 0000 0000 0.000 QBP0
2000 o0

¥ What is this number?

2010 + 2012 + 2413 + 2015 + 2116
= 111,616

176 Lesson 20

you get the hang of it. Let’s say the bytes you see are
$9F 66 7D 80 1F. Write those Dbytes down.
$9F 66 7D 80 1F. The leftmost byte is the power-of-two
exponent, you recall, revolving around the $80 pivot point.
$9F minus $80 is $1F, so you know that this number is $1F
(that is, decimal 31) digits long. The digits themselves are
66 7D 80 1F, which, when translated into binary,
become:

p11p £11p P111 11Q1 1508 PRSP PR 1111

You can follow along in the book or write those down. The
leftmost bit is the sign bit; it’s zero, so this is a positive
number. Now you can replace the zero with the
“normalized” one for calculation purposes. Here’s the
number:

1119 11 P111 11p1 190P ARG 09P1 1111

The binaral point is after the $1Fth digit . .. that’s the 31st
digit. So the binary number now is:

11109110011111011000000600A1111 .1

I'll do the sum with the powers of two method. 240 + 241 +
242+ 243+ 2414 + 2415+ 2417 + 2418 + 2419 + 2420 +
2421 + 2424 + 2425 + 2428 + 2429 + 2430 works out to
1,933,492,239. Remember, you start from the immediate
left of the point and sum up the powers of two. The result
once again is 1,933,492,239.

But what about that.1 at the end of the binary string? What
is that and how do you use it?

In decimal, the numbers to the right of the decimal point
represent negative power of 10, or, if you like 1/10ths, 1/
100ths, 1/1000ths, 1/10000ths, etc. In binary, the numbers
to the right of the point represent — you guessed it —
negative powers of two. one-halves, one-quarters, one-’
eighths, 1/16ths, 1/32nds, 1/64ths, etc. So that “.1” at the
end represents 1/2, or in decimal, 0.5. The resulting
number should therefore be 1,933,492,239.5 on the Color
Computer.

That’s both right and wrong. A few minutes ago I said that
the Color Computer BASIC’s accuracy is only nine digits.
That's a choice made mostly for reasons of speed and
consistency. If you write X = 1933492239.5 and enterit on
the computer, your PRINT X will reveal 1.9334922
4E+09. That’'s BASIC’s scientific notationfor 1.93349224
times 10 the 9th. In other words, not 1,933,492,239.5, but
rather 1,933,492,240. Only nine significant digits are used,
so part of the number gets rounded off and abbreviated.

5

o req

INARY

PAPUTER.

SORAE.-

ﬁ_lje $ IF & 7D B IF
CALCULATE
397 - 20 - (51F)
a OAITIVE
5 Lo 7D 80O IF
o v N

MALTISSA
WRITE. [N BINARY :
SENT = PosiTivR

Lo=0Or/6 O/e
=01/ 110/
80 = /000 oo
J/F=000r 171/

40 WHAT Cp You Kiow?
RBTIVE. EXPOEMT=$/F
MAITISSA. SIGA) 1S FOSITIVE.
MAATISSA. S
Q//0 @170 ©/77 1707 /000 OOOG OO0/ ////

P ’
NORMALIZE
5; MALTERA
’OI/O OIIO O/ F707 7000 OO0 OOOQ/ 1/)

BEoMes
\///a OL10 OL17 110/ 1000 OO OO /)

EXoNENT $IF =ocoo! 111

@ TRINK_ ,,, THIS MEANS
(=]

WAIIO OL/O O/ 1107 OO CORS Ooo/ /]

XZOOO///’/ —
(010 OI1O O11) 170/ 7000 OOCS Q0! /1 /.S

...000;’///-/

B I

PR O S Iy Y
&,

PESULT IN DECIHAL.
1,933 492,239, 5

Another random example. Stay with me.
$7C 91 32 2F 00. Write it down to work with.
$7C 91 32 2F 00. $7C in the first position is the
exponent byte, but this time it’s less than the $80 pivot.
This is a number with values all to the right of the decimal
point. That is, a number less than 1. $7C is —4 binary
positions, so you know the binary number begins with
.0000 .

The hexadecimal for the rest of the number is
$91 32 2F 00, which is, in binary:

1091 0AP1 PP11 BP1P PR1P 1111 £ARP PRAP
The one in the leftmost position means this time we’ve got a
negative number. Now that you know that, you'll also

remember that it is “normalized” to one for purposes of
calculation. So the result is

p0p1 g1 P11 PP1 PP1Q 1111 POAR POAS.

With .0000 in front of it, it becomes:

-Pep10p10A10P110010001011110PPAOAAD

Learning the 6809

Normalized notation

+« If the mantissa i1s {181 1QiQ
0000 0000 AO3Q QXG0 2008 DR
and the exponent byte is $99,
place the point,

Ligl 1810 o208 O0OR 0G00 DO0R
0. %02 2200

* What is this number?

2+1B + 2020 + 2021 + 2023 + 2424
= 28,573, 6%.

* If the (normalized) mantissa
iz 1181 1010 000 0000 D00 2020
0000 0022 and the exporent byte
is $RB, place the point,

{121 10l0 GOGe 002 Q0R2 Q0GR
00 2000,

* What is this number?

2125 + 2027 + POEB + P43Q + 2431
= 3,657,433, 088

What are the two parts of
floating-point representat 1on
called?

The exponent and the mantissa.

+ What is ! divided by 2t1?
1/(2+1) is 1/2.

What is | divided by 2¢27
1/(242} is 1/4.

¥ What is 1 divided by 2+18?
1/(2+16) is 1/63536.

& If the (novmalized) mantissa
is 1110 0220 000Q COR 2000 A0aR
9032 2@ and the exponent byte
is €82, place the point.

11,10 0002 0QD0 0000 0000 0AQE
do0a odon

What is this number?

2L+ 240+ 1/{2e]) = 3
33

i/2 =

177

Negative numbers

¥ If the normalized mantissa is
ISR SR R R AR SO F AN RS AN B R B
1111 1111 and the exponent byte
is $98, place the point.

111 1111 111 1.
1111 1

11 1

* What is this number?

240 + 201 4+ 242 + 243 + 244 4
245 + 246 + 247 + 218 + 243 +
2410 + 2411 + 2412 + 2013 + 214
+ 2¢15 = §5,535. 17241}
170292) + 1/{243) + 1/{2+4)
171245} + 1/(26) + 1/{2+D)
17(248) + 1/7{249) + 1/{2+{®)
12(2411) + 17(2412) + 1/{2413)
17{2+14) + 1762418}
.999984741210%4., Therefore, the
number is 53535, 99998474121894,

W o+ + + + +

* What would this nuwber be in
the Color Computer’s wmost
significant digits?

£5535.99938 is rounded off (up)
and becomes 63536.

% What are the two parts of
floating-point representation
called?

The exponent and the mantissa.

What information does BASIC's
VARPTR provide?

The address of a BASIC
variable.

In the case of floating-point
variable N, what is found at
- VARPTRIN)-2 through
VARPTR(N) +4?

VARPTR(N)-2 and VARPTR(N)-{ are
the name of the variable;
VARPTR(N} is the exponent; and
VARPTR(N}+1 through VARPTRIN)+4
comprise the mantissa.

What does VARPTR wean?

Variable pointer.

178 Lesson 20

These are now fractional powers of two. You must sum 1/2
plus 1/4 plus 1/8, and so on. You can think of this
calculation as: zero times 1/241plus 0 times 1/242, etc. In
this casethat’s 1/245 + 1/248 +1/2412 + 1/2415 + 1/2416
+1/2419+ 1/2423 + 1/2425 + 1/2426 + 1/2427 + 1/2428
... that is, —.035448249429465 . Your Color Computer
would report that as the slightly less precise -
.0354482494. The number stored in the computer as
$7C 91 32 2F 00 becomes -.0354482494.

oo P, ‘ﬂb $7¢ 91 32 ZF P
NEGATNE N 87¢-80-€F) ()

NECATIAE
EXRAENT

G, s = 2 o8

e’
MANTISSA

& 2"’”-"’ NEGATIVE.

¢/ = 100! ©ooe/
22:=00// QO
2Fz00/0 /77
00 = ACOO Q000

@o NOCPACIZE

1061 E0! OOl OGS CHO 1717 OO0 Boet
Xz:fl
5} » 0000 /w{ QOO COL OO OO /1 11/ OO CooD

/l
25428+ 277,
@o —, O%EHYB LAY

While we're at it, let me quickly bring back one of the
examples I gave at the start . . . I said that 0.1 was
represented as $7D 4C CC CC CD.Havealook $7Disa
right-of-the-point prefix of .000 and the number
4C CC CC CD trangslates to binary . ..

8169 1100 1199 1108 1199 1199 1109 11P1

It's positive; the normalized one changes the number to:
1199 1189 1190 1180 11pp 1109 1189 1191

Together with the prefix, it reads:
PPp11pA11pR110011001100110P11061101

Calling that out in powers of two,it’s 1/244 +1/245 +1/248
4+ 1/249 + 1/2412 + 1/2413 + 1/2416 + 1/2417 + 1/2420
+1/2421 + 1/2424 + 1/2425 + 1/2428 + 1/2429 + 1/2432
+ 1/2433 + 1/2435 and that calculates to
.10000000000582. Notice that residual .00000000000582
tacked on to the end of the number. That's the tiny binary
error that you've probably experienced creeping into
BASIC calculations.

More on that error and other floating point concepts aftera
break. You might be weary of all these calculations. They’ll
get both easier and unnecessary later. For the moment, I
would like you to review the lesson up to this point, book in

hand, calculating along with me on paper or on your hand
calculator. There’s a lot to this floating point math, and
understanding how to push around those bits is vital if you
wish to work with numbers on your computer.

Please review the concept of floating point numbers. When you
are confident of the theory of floating point binary notation, re-
turn to the tape.

Here’s a summary of floating point numbers. As stored in
BASIC’s variable table, they consist of seven descriptive
bytes. The first two bytes are the variable name; the last
five represent the number itself. The first byte of the group
of five is the binary exponent, from 24-127 to 24+127. The
next four bytes are the mantissa, that is, the number itself,
expressed in binary digits. The leftmost bit of the 32-bit
group is normalized to a one for purposes of calculation,
but as stored it represents the sign of the number.

This complex-sounding process provides, in five bytes, the
ability to store decimal numbers across the range +/—
1.70141176E+38 (24126.9999999) to +/— 5.87747201E-
39 (24-126.9999999), with nine digits of accuracy.

There are two ways to access BASIC variables from
machine language. One way is via the USR command, and
the other is by accessing BASIC’s variable table. The
variable table storage is the one I've been describing. There
is another slightly different kind of storage when the
variable is transferred via USR. It's described in the
Extended BASIC manual on pages 147 and 149, under the
heading “USR Function Arguments”. You’ve already read
part of this, but now it should make more sense; take a few
minutes to re-read that now, and pay special attention to
the description of the “Floating Point Accumulator’”.

Open the Extended Color BASIC manual and re-read pages
147 through 149, headed “USR Function Arguments,” concen-
trating on the new information on page 147. Read this
thoroughly, as it now applies to your understanding of binary
floating point representation. Return to the tape when you have
completed the reading.

You haven’t been told the whole story in that reading. You
should know that the contents of VARPTR(X)-2 and
VARPTR(X)-1 are the variable’s name. VARPTR is an
excellent function, one that machine language programs
can use extensively.

Learning the 6@9

USR arguments
* What is an integer?

R whole wnumber with no

fractional part.

*What is 3
nusber?

floating-point

A number with a fractional

part.

* What are the two parts of
floating-point representation
called?

The exporent and the mantissa.

¥ The exponent and the mantissa
are in what number system?

The exponent and the mantissa
are in binary (base 2},

179

VARPTR

Just for a taste of the use of VARPTR, type and enter X=1.
Simply X=1, and enter. PRINT X will display the number
1. Do it to be certain, PRINT X. Now POKE
VARPTR(X),&HFF. That's POKE VARPTR(X),&HFF.
PRINT X. The result will be 8.50705918E-+37.
VARPTR(X) is the exponent of the number, which that
POKE with $FF has raised to an enormous power. Now
POKE VARPTR(X),1. That's POKE VARPTR(X),1. The
result is just the opposite: PRINT X will reveal the
amazingly small value 2.93873588E-39.

Now get things in range. POKE VARPTR(X),&HS88.
That’s POKE VARPTR(X),&H88. Now PRINT X. You’ve
got 128. Now mess around with the rest of the number.
POKE VARPTR(X)+3,1. POKE VARPTR(X)+3,1. And
then PRINT X. Now it’s 128.000015. How about POKE
VARPTR(X)+2,&HAA. It's 128.664078. VARPTR(X) is
the power-of-two exponent, VARPTR(X)+1 through
VARPTR(X)+4 are the binary digits of the mantissa.
POKE around with the 5-byte descriptor at the end of this
lesson; it should give you additional perspective on how
those numbers are stored. As a real exercise, POKE
VARPTR(X) through VARPTR(X)+4 with random
numbers, and see if, by knowing the result of PRINT X, you
can determine those four numbers. With the description
T've given you, you should be able to do it.

One more time for that description: five bytes, power-of-
two exponent first, 32 binary digits next, with the leftmost
the sign bit, but considered to be a 1 for purposes of
calculation. When you’ve got a good handle on the floating
point representation, you're ready for the next session.
Give it a try, enjoy it, and I'll talk to you next time.

Program #30, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program.
If the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the start of the program and try again. For
severe loading problems, see the Appendix.

1 CLEARS89:DIMA(S) , A$(5), B4 (16) :A=8:B=0:FORI=4T015: READBS (1) sNEXT
2 CLS:INPUT*NUMBER TO DISPLAY* ;A:PRINT :B=VARPTR(R) :FORI=1TOS:A(1) =PEEK (B+1-1) sNEXT

3 FORT=1TOS:AS{1)=HEX$ (RL1)) IFACT) (16THENRS L) =" 418 1)

& NEXT:PRINT* FLOATING POINT STORRGE OF*:PRINTTAB(S)A

S PRINT:PRINTTABIG)*$ *;:FORI=1TOS:PRINTA$(1)® *;:NEXT:PRINT

& PRINT:PRINT* BINARY REPRESENTATION OF*:PRINTTAB(9)A:PRINT

7 IFA=BTHENCS=STRINGS (32, "0°) :60T014

B G=VAL ("BH"+LEFT$(R$(2), 1)) :C=BOR 5:6=5 ANDB:A$ (2)=HEXS(C) +RIGHTS (RS (2), 1)

9 FORI=2TOS:C=VAL (*BH"+LEFTS (AS{1), 1)) :D=VAL (*BH*+RIGHTS$(A$(1), 1))

10 C3=C8+BS(C) +B% (D) :NEXT:E=R(1) ~128: IFE (BTHEN11ELSE12

11 E=-E3C#a", *+STRINGS (E, "0*) +($:60T013

12 TFE(LEN(CS) THENCS=LEFTS{(C$, E) +°. *+RIGHTS LS, LEN(CS)-E) ELSECS=CH+" (“+STRINGS(E, "0%)+*,)
13 IFB=BTHENSS="(-)"

14 DY=B9+C8:PRINTCS:PRINT:PRINT® TOUCH (ENTER) TO CONTIME®

15 DATAG0OR, 0061, 0810, 0011, 0108, 101, 0116, 0111, 1908, 1081, 1816, 1911, 1160, 1101, 1110, 1111
16 AS=INKEY$: IFA$=""THEN16EL SERLN

180 Lesson 20

")

L @2y
PRoGRAM

86

= gt
R

ESETIY R
~NWOIM2

C-wpm
U040 m<

You’ve arrived. This is the time for putting what you know
about assembly language together with what you know
about BASIC. I'll get right to it by reviewing how BASIC
hands over control to amachine language program: through
the USR function and via the EXEC call.

EXEC is used for execution after a load from cassette, but
EXEC also is the simplest, and probably the best choice
for including in a BASIC driver program for fast program
speed. EXEC is a direct transfer of control to the machine
language subroutine, where no attempt is made to pass
along variable information. EXEC 12288, for example,
departs from the BASIC program in progress and begins
machine language execution at address 12288 (hex $3000).
The Morse Code program, where the start and end of the
message are fixed, and the Game of Life, which simply
begins, need no more information than an execution
address. In the Game of Life, EXEC 3200 provided the
starting address (3200 is $0C80) and told BASIC to
relinquish control to the machine language program. That
was it.

EXEC stores the address you provide ina memory location
accessible to BASIC, so that the next time you use EXEC,
you need not specify an address; it will automatically use
the last one until you change it. Also, the entire BASIC re-
entry information is stored, so — unless you’ve messed
around things in BASIC’s direct page — all will be intact
when your machine language programreaches its final RTS
(return from subroutine).

That does bring up the question of BASIC’s direct page,
and in fact, where you can store the machine language
programs you will be writing. The back of your BASIC and
EDTASM+ manuals gives you some information about
how your computer’s operating parameters are organized;
turn to page 63 of the EDTASM+ book. Pay careful
attention to the opening information on page 63. The
manual states that when BASIC is in use, the direct page
register is pointed to page00; it notes that BASIC requires
certain portions of this page, as well as quite a bit of page

Learning the

{nless you have high hopes for
creating full-scale commercial
software, chances are you'll be
using BASIC as your home base.
A BRSIC driver can be simple or
complex, performing straight-
forward program executions,
transferring variables back and
forth, and creating graphics
frameworks using BAsIC's
powerful drawing commands, No
watter what your goal, knowing
the relationship between BASIC
and assembly language can speed
your prograsming.

The simplest command to
execute a machine language
program from BASIC is what?

EXEC.

What information does EXEC
require?

The starting address of the

machine language progras.

EXECEHR@D7 means what? (Try
ith
Begin executing a wmachine

language program beginning at
address $AGD7.

6809

181

Protected memory

* What does "8H" mean in BASIC?
&H weans hexaderimal.

¥ How does 3 machine language
program get back to BRASIC?

By executing RTS (return from
subroutine).

% When BASIC is operating, where
is the 6889's direct page
register?

The direct page register is set
to $0a,

What is a position independent
progran?

A program designed to run
correctly no matter where it is
located in semory.

Which of these is a position
independent command: LBRA TRAKI
or JHP TRAK1?

LERA TRAK1 is position
independent.

% What addressing wmode is LBRR
TRAKL?

Relative addressing.

Which of these is a position
independent cosmand: LDX
#TABLE or LEAX TRBLE, PCR?

LERX TABLE,PCR is position
independent.

¥ What addressing mode is LERX
TABLE, PCR?

Relative atdressing
{specifically, program counter
relative).

¥ What does LERX -1,X mean?

Let X becose X-1.

% bhat does LEAX $45,Y mean?

Let X becose Y+$43,

182 Lesson 21

01. Other portions here and there are marked, “can be used
for machine-code programs.”

Look at number 6 in the third column. Entitled “User
Memory,” this is described as “Total space for user
machine-language routines. No space is reserved for this on
start-up, but this can be reset by the CLEAR
statement.”

Now what about all this? How can you be confident that the
program you place in memory will stay there? And that the
program will be accessed as expected? How is memory
protected from BASIC? What does “protected” mean?
And how is your program protected from other machine-
language programs?

Frankly, the answers to those questions depend on how you
plan to use your software. If you're going to use only your
own software, and use your software with BASIC as you see
it described in these manuals, then you’re safe. But. ..

... if you plan to use commercial software, such as special
printer drivers or communications programs or math
routines or whatever, you run the risk of having your
program conflict with that program.

. .. if you plan to use a disk system, especially 0S-9, the
memory mapping of these devices may alter the area you
plan to use.

... if you intend to write software to sell, you must expect
that memory conflicts will arise with both other commercial
software and the user’s software — somewhat the converse
of what I said earlier.

There are options. I'm not offering any business advice if
you plan to sell your software, but I can recommend that
you make your commercial machine-language programs
position independent. Use the guidelines and approach as
presented in session 19. If your program must be position
dependent for reasons of speed or memory economy, then
provide with it a relocator — a companion machine
language routine that will automatically rework the
program to fit in another area of memory. Beyond those
recommendations, you're on your own as a software
businessperson.

For most important programming, I'll stand by my
position-independence or relocation recommendations.
Let me tell you how to make position independence work
for you on the Color Computer — after you've already
written the position-intependent software, of course.
Here’s how:

In your assembly listing, place the origin at $0000. You can
do that by specifically typing ORG $0000 for reference, or
by leaving out the ORG statement. The assembler assumes
$0000 if you don’'t specify otherwise. Save the source
program to tape, and also assemble and save the object
code.

B WITH
Al
MENT
12348 !

{13us=$29)

&

ON TAPE.".
ORG #E8F

C LOAD P\!

~poxmz §

[0 wwre; & Hoico]

00 + ofco

[¢ Loap M NaME", & H3oco |

14747,

&

3000

When you want to load and run this machine language
program, you use the command CLOADM. If the
program’s name is “Blurb”, for example, you would
normally type

CLOADM“BLURB”. With position-independent pro-
grams, vou need something more. You need an offset
address, an address which is added to the CLOADMed
address to produce a resultant location in memory where
the program is going to be stored. For example, if the
program is to load into memory beginning at 12288 (hex
$3000), you would type CLOADM“BLURB”,12288 or
CLOADM“BLURB”,&H30060. The program will add up
your origin ($0000) and the offset address ($3000), and
begin loading the program into that area of memory. Since
your origin is $0000, then the offset address turns out to be
the same as the loading address. And since the program is
position-independent, it can start running as soon as you
type EXEC.

I've got a very brief object program coming up. All this
program does is load a short ASCII message into memory.
The source program goes like this (you can glance in the
book):

pp10p FCcC
o119 END

/THE MESSAGE IS HERE/

After I assemble this, I will have nothing but a group of 19
bytes on the resulting tape. The lack of a specified origin
means that the assembler will place these 19 bytes
beginning at address 0000. The program coming up next is
dumped to tape ten times; its name is “TEXT”. So if you
want to see this message, what you want to type is
CLOADM“TEXT”,1024. This will load the message to the
first space on the video screen. Then try any location on the
screen and see where the subsequent nine messages come
into view. Remember that the normal screen is mapped
from $0400 to $0600 (1024 to 1535 decimal), so to see the
whole message, your offset addresses should be in that
range. So try these ten messages; I'll be back with a
description of what memory is free and how to use it.

Programs #31A to 31J, object code programs. Turn on the
power to your Extended Color BASIC computer. When the
cursor appears, type CLOADM and press ENTER. The com-
puter will search (S) and find (F). When the cursor reappears,
type EXEC and press ENTER. The program will execute auto-
matically. If an 1/0 error occurs, rewind to the program’s start
and try again. For severe loading problems, see the Appendix.
For additional loading of programs 31B through 31J, refer to
the text.

What you’ve just done is load blocks of binary information
into memory. Since the binary information was saved to
tape with a loading address of $0000, the offset addresses
you specified in the CLOADM command became the
actual loading addresses for the binary data.

Learning the 6809

Load offsets

* What cassette comsand loads
BASIC programs?

CLORD.

¥ What cassette commard loads
machine language prograns
directly into memory?

CLOADM.
* What does ORG mean®

Origin, that is, the first byte
of a source listing.

* If ORE is left out of an
assembly listing, where does the
assembler begin assembly (the
default ORG)?

At address $0000.

* If a machine language prograw
named TESTER were ORBed at
40000, what BASIC comsand would
load that program?

CLOADM or CLOADM“TESTER®,

% If a machine language program
named TESTER were 0ORBed at
43008, what BASIC comsand would
load that progras starting at
$2000?

CLOADM*TESTER®, $Ho008 or
CLOADM"TESTER", 8192
What is the value appended t{o

the CLOADM comsand called?

fin offset address.

Where is the norwal video
screen in the Color Computer

nencry map?

At locations 1824 through 1535
($6408 through $@OFF).

* phere do the high-resclution
video screens begin on the Color

Computer?

At location 1336 (5$0609).

183

Low and graphics memory

+ How much space does PCLEAR]
reserve?

1536 bytes ($0600 bytes).

* How much space is reserved by
PCLEART through PCLERRA?

1536 through 12,288 bytes.

If high-resolution graphics
will not be used by BRSIC, can
wachine language programs be
stored in the area reserved by
PCLEARY?

Yes.

How much space is reserved by
PCLEAR], and what are the
addresses?

1536 bytes are reserved frow
$0600 to $C00,

¥ What is the purpose of CLEAR?
To reset all BASIC variables.

* What is the purpose of CLEAR
N, where N is a number?

To reset all BASIC variables,
and to reserve N bytes for BRASIC
string manipulations.

% What is the purpose of CLEAR
N, X where N and X are numbers?

To reset all BASIC variables, to
reserve N bytes for BRSIC string
manipulations, and to oprotect
wemory from BASIC beginning at
address X,

* What effect does
CLEARZ®O, 16384 have?

1t resets BASIC variables, sets
aside 208 bytes for BASIC string
manipulations, and makes 16384
($4000) the start of protected
Memory.

* phat is protected memwory?

Mewory that is not available for
BASIC' s use.

184 Lesson 21

Such position-independent programs can, naturally, be
moved as often as you wish. The next question, therefore, is
where do you put the programs?

There are four places in your computer’s read/write
memory for convenient storage of machine language
programs. You may store this binary data in low memory as
provided in the memory map; in high memory protected
from BASIC; in high-resolution graphics memory; and
inside a BASIC program line. Each in turn now.

Storing a program in low memory is not safe from $0000 to
$0069. These are 106 bytes called “free”, and there is also
so-called free memory at $0115 to $0119 (five bytes), and a
block of 53 bytes from $011D to $0151. None of this is safe
for program storage; don’t use it. The EDTASM book’s
phrase “can be used by machine language programs”
means that you can store data here while your machine
language program is underway. When you return to BASIC
(especially if your machine language program is an integral
part of a running BASIC program), the information BASIC
needs in low memory is likely to be altered. However, with
one of the excellent detailed Color Computer memory
maps that have been published, you can learn how and
when low memory is used by BASIC. So for now your rule of
thumb about low memory is: don’t.

There are three remaining options, and, with only a few
reservations, all of these options are good ones. They are
high memory, high-resolution graphics memory, and
memory inside a BASIC program.

Storing programs in graphics memory is easy and
reasonably safe. PCLEAR is BASIC’s way of reserving
high-resolution graphics memory, and PCLEARI1 is the
smallest amount of graphics reserved memory allowed.
PCLEART1 allows 1,536 bytes of memory from $0600 to
$OBFF to be used for storing a machine language program.
There are two major caveats to this process. Most obvious
is the fact that you can’t use high resolution graphics if you
choose this method. Since this memory is intended to be a
graphics screen, using any graphics command risks
damaging the stored program. The other warning is the
POKE often used on memory location 25, where the
PCLEAR number of graphics pages are stored. Since
PCLEARO is not allowed, a POKE to that location has
been popularly used to free up some extra memory. But by
doing that, you wipe out the graphics screen and the
machine-language program along with it. So, in summary,
use graphics memory for your program only if you can be
sure BASIC will not be using high-resolution graphics
commands.

The most popular mode of storing binary code is by placing
it in protected high memory. BASIC is specifically setup to
allow this use, and I consider it wisest to follow those
recommendations when all other considerations seem
equal.

&

A%

Low MEMORY
(IF You BELIEVE
THAT...

)

BT BSC || EXT R |
CoR B | | coworBAsc
| CTRIDGE | | CARTRIDGE |
NOT gD || NoT useD

MR |
- FRIL
BT R EXT AL
| ook B | | cotor o |
ARTRIDEE | | CARTRIDGE |
NOT (SED NOT UoED

Protecting high memory is an easy task. The BASIC
CLEAR statement is used for this. The CLEAR statement
performs three functions: CLEAR alone resets all BASIC
variables and arrays; CLEAR followed by one number (as
in CLEAR200) sets aside space for BASIC’s string
functions; and finally, CLEAR followed by two numbers
(as in CLEAR200,14000) sets aside string space as well as
creates a boundary beyond which BASIC may not
trespass.

Inthe case of CLEAR200,14000, memory locations 14000
(that’s hex $36B0) and above are not used by BASIC. It's as
if your computer only had 14,000 bytes of memory instead
of 16,384 for a 16K machine or 32,768 for a 32K machine.
The only commands that will affect this memory are POKE
(which can change any RAM location or output address)
and CLOADM (which will attempt to load its data to the
specified address whether memory is present there or
not).

Here’s how it works. If you have a 400-byte machine
language program which you want to store in the high
memory of a 16K computer, you first determine if the
program is position independent. If you wrote the program,
then you’ll know for sure; otherwise, read the
documentation for help. Assuming you know that the
program will load and run in those top 400 bytes, you then
subtract 400 from the highest memory location in the 16K
computer. 16383 minus 400 is 15983. Then you'll need to
determine if whatever BASIC program you’re about to run
will need more or less string space; the space allocated at
power-up is 200 bytes. With that in mind, construct the
CLEAR statement in the form CLEAR string space
comma memory barrier. To protect 400 bytes and have the
normal amount of string space, you would enter
CLEAR200,15983.

Memory is protected and you are ready to CLOADM your
machine language program or other binary data. For more
information on CLEAR, use your BASIC manuals.

The final method of placing a binary program into memory
is called the in-string or string-packing method. This
technique was first popularized on the classic TRS-80
Model 1, and remains a favorite for short, position-
independent programs. Keep in mind that this isn’t a
universal technique; it expects certain features found only
in Microsoft’s dialect of BASIC.

To understand string-packing, you have to do a little
rethinking about BASIC itself. The BASIC you're most
familiar with is a programming language. You don't often
think of a BASIC program as anything but what it
represents. But a BASIC program is something different
from what it represents. .. it is something that fills memory.
And something that fills memory is binary information. A
machine-language program is binary information. If both
are binary information, can they coexist in a single
listing?

Learning the 6&)9

CLEAR

¥ Can a machine language program
be stored in this protected
wemory?

Yes.

* Once a wmachine language
progras is in place, what
commands are used to execute the
progran?

EXEC or USR.

In the Color Computer, what
essential computer "matter® does
a BASIC program consist of?

Binary information.

What does a machine language
progras consist of?

Binary information.

* Microsoft created Color amd
Extended Color BASIC. What
technique of storing a wmwachine
language program can be used
with Microsoft BASIC?
String-packing,

* What is string-packing?

Placing a wachine language
program inside a BASIC string,

within the BASIC program
itself.
What information does BRSIC's

VARPTR provide?

The address of a BRSIC
variable.
* What three pieces of

information does VARPTR provide
about a string?

The variable name, the length of
the string, and the address of
the first byte in memory where
the string is located.

What is the longest line that
can be typed in BASIC?

24@ characters.

185

POKEing a string

* If a string variable name
takes two bytes, an egqual sign
takes one byte, and the
guotation marks take twc bytes,
how many bytes are left for the
string itself?

233 bytes.

* What is the longest machine
language program that can be
stored in a BASIC string?

235 bytes.

what three BRSIC commands are
gssential for string packing?

VARPTR, PEEK and POKE.

Why is VARPTR nrecessary for
string packing?

VARPTR is needed to locate the
address of the string’s vital
information in memory.

¥ Why is PEEK wmecessary for
string packing?

After VARPTR provides the
address of the string
information, PEEK is used to
determine the length and address
of the string itself.

¥ Why is POKE necessary for
string packing?

The instructions and data that
make up the wmachine language
program must be POHEd into
memory where the string
currently resides.

% Why are comsands POKEd in
place?

Because all 23 possible
cowbinations from $@8 to S$FF
cannot be typed from the
keyboard,

What two BRSIC commards are
used to ran (access) 3 machine
language progras?

EXEC and USR.

186 Lesson 21

Don’t think about the source code now. Think about the
binary code. And consider that BASIC has at least two
situations in which it does not tamper with or interpret
information as part of a program. In other words, there are
two situations in which BASIC doesn’t mess with what you
type: after a remark (REM) statement and inside the
quotation marks of a string variable.

One of these two situations is of special value. Recall the
last session when I talked about floating-point arithmetic. I
mentioned a BASIC command called variable pointer, or
VARPTR. The command VARPTR points not only to
floating-point numbers, it points to any variable. So type,
enter and run this one-line program . . .

1§ A$ = "THESE ARE THIRTY-ONE CHARACTERS"

. . . you can then ask for VARPTR(A$). PRINT
VARPTR(AS$). The computer will report 7726. At memory
location 7726 is information about A$, five bytes of it. In
your reading of the Extended Color BASIC manual for the
last session, you may recall that the first byte is the length
of the string, and the third and fourth bytes are the address
of the first character in the string.

There’s the clue. The third and fourth bytes of this
descriptive information are the address of the first
character of the string. If you create a string of the correct
length, and if you know where the string is in memory, and if
you are confident that BASIC won’t mess with the strings
as they appear in program lines (it won’t), and if — at last —
you don’t plan to use that variable for any other purpose
within the program . .. then you can safely store a machine-
language program within those quotation marks.

I wish you could just type such a program right into the
string. You can’t, of course, because you might need any
one of the 256 possible bytes for your machine program,
but only about 96 are typable from the keyboard. So you
have to go in the back door.

The key to the back door is right there in the mailbox. You
use the variable pointer VARPTR to find out where A$ sits
in memory, you take a listing of your program in
hexadecimal bytes, and you POKE them, one at atime, into
the place occupied by A$. You could POKE bytes one ata

time by hand, but there are easier ways. I have a program to.

show you the details; list it, but don’t run it until I'm back
with you.

Program #32, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an I/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

A% = "13 craRACTERS"

PRINT A¥
PRINT A%
13 CHARACTERS
50 VAR PTR_(A$)
oD Q& 3| g4 &
LENGTR NoT S [rs
T o e 0
.3”\
110
slﬁ/f
Sio€ | 2
D 3’25 Z
BYES | [Bloc Ly
yggmf
%ol 4]
308 6/
3/07
3!‘;‘/3/
EiC.vg]
-5)
31034
4, IF
M=&HBio4
(AorESS OF AS)
N=&H4]

(rscti "A™)

o
o

R X =| To LEN (A4)
FOKE. M, N

M=M+|

NexT

CAUSESs

:

biad
%
ey

i
0w
PIEIBED

FRINT AS

AAAAAAARAAAAA
BECAUSE:
VAR PTR (4)

L«»D o7 234 ¢¢J
LENGTH NY v~ Nor
(EED Jomvgss USED

N Gvalee |
BASIC 1S FeoLED !

1@ A=A:B=0:C=@:D=AQ:N=0@:0=Q: X=0
em B*: L1 E

32 A% = "14 CHARACTERS!'®

4@ A = VARPTR(AS)

5@ B = PEEK{(A+2)

6@ T = PEEK(A+3)

72 D = R#&H1Q@ + C

8@ DEFUSR@ = D

3¢ FOR X = 1 TO LEN(A%$)

18@ READ EB%

11@ POKE D, VAL (“&H"+E$)

120 D = D+1

13@ NEXT X

14@ DATA BD, B3, ED, BE, @4, 2@, E7
15@ DATA 8@, 8C, @6, 80, 26, F9, 39
168 STOP

17@ INPUT @

188 N = USRe(Q)

19@ FOR X = 1 TO S@@ : NEXT
20@ BOTO17@

LIST this program. Notice that A$ is 14 characters long.
Andnotice thatinlines 140 through 150 are a group of what
look like hexadecimal numbers, presented as DATA
statements, and following thein is a short routine to read,
convert and POKE them in place. The program, which you
can hand-disassemble (that is, convert from hex to source
code), simply fills the screen with any character you input.
Look at these statements:

A = VARPTR(AS)
PEEK (A+2)
PEEK(A+3)

B * &Hlpp + C
EFUSRP = D

t

(== 2w B ap B o o}
i}

There are ten USR calls allowed by BASIC, USRO through
USR9, meaning you can have up to ten different machine
language programs. DEFUSR identifies for BASIC the
starting address of the machine-language program. In this
case, the program is stored in A3, so variable A finds
VARPTR(AS), and variables B and C obtain the two
address bytes where A$ can be found. Since BASIC’s
workings are in decimal, you can’t just dip in and pull out a
16-bit address; you've got to combine the most-significant
byte with the least-significant byte to get a result. In case
you hadn’t thought of it this way before, you’ll notice that in
hexadecimal, the most-significant byte is always $100
times the least-significant byte. So the resulting address is
hex $100 times B, plus C.

All of this could be combined into the complicated looking
formula DEFUSRO=&H100* (PEEK(VARPTR(A$)+2)
+ PEEK(VARPTR(A$)+3). Now matter how you write it,
it defines where the machine language program starts.

Now RUN the program; it will BREAK in 160. LIST the
program, and have alook at A$. It looks longer now (itisn’t)
and seems to be garbage. Type and enter PRINT AS$. A
peculiar but different result.

DEFUSR with strings

If a machine language program
is at $300@, use EXEC to access
it.

EXECEH300Q,
* What must be done before a

machine language program cah be
accessed with USR?

The entry point must be
defined.

¥ What BASIC command is used to
define the USR entry point?

DEFUSR.

* How many USR entry points does
Extended Color BASIC offer?
What are they?

Ten entry points, USR@ through
USR9.

+ What is the advantage of USR
in certain situations?

USR can transfer information to
the machine language program,

* If the machine language
prograM begins at $308Q, define
the USR@ entry point.

DEFUSRe=EH3080

Learning the 6809 187

String packing

If the information to bhe
transferred to the program
beginning at $3080 is 12345,

give the USRQ command to access
the program and transfer the
information.

PRINT USR@(12343) or N =
USR@(12343)

* bive the formula to define a
USRY entry point to a wmachine
language program stored in N$.

DEFUSRI = 3Hige ¥
{ PEEK(VARPTRINS$)+2
PEEK (VARPTRI(N$) +3)

+

* In string packing, what values
should be avoided if possible?

Why?
$00, becawse it is BRSIC's
end-of-line marker; and $22,

because it is eguivaient to ar
ASCII quotation mark.

+ How does a wachine language
program get back to BASIC?

By executing RTS (return from
subrouting).

* What is a position independent
program?

A program designed to run
correctly no matter where it is
located in memory.

188 Lesson 21

Recall many lessons past when I said that a single 8-bit
word of memory had to serve many purposes. Now you see
them. You have a machine language program stored inside
A%’s quotation marks. When you print it, it looks like
graphics and ASCII characters. When you list it, it looks
like BASIC commands. What is it? It’s still your machine
language program, but the PRINT routine doesn’t know
that; the BASIC PRINT routine thinks it’s a string to print.
The BASIC LIST routine thinks you somehow stuffed
commands inside the quotation marks. You can ponder
that on your own; I'm getting back to the program.

You've already run this program, so just type and enter
CONT for continue. The prompt asks you for avalue from 0
to 255. Enter a value. The screen fills with your character
and returns to BASIC; nothing new here. The machine
language program is at work. Try more. Each time, the
screen fills almost instantly.

Now tap BREAK, and LIST this program again. Notice in
line 170 that the program inputs variable @, and in line 180
the command N = USRO0(Q) is encountered. The variable
Q is passed to the machine-language program, which
converts it and uses it to fill the screen.

There you have it: VARPTR used to find a string in a
BASIC program, the machine-language program packed
into that string, DEFUSR set to point to the start of the
program packed into the string, and USR commanded to
execute the program. One of the slickest methods ever
devised.

Just a few warnings. First, be careful not to use the variable
over again inthe program. It won’t erase where the machine
language program is, nor its contents, but at some point
either the BASIC or the machine language might end up
misinformed about where things are.

Second, save the program before running it, and once
you've run the lines containing A$ and allthe POKEs, don’t
run past them again. Here’s why: there are two hexadecimal
values that can’t appear in the string. One of them is $22
and the other is $00. $00 is used as BASIC’s end-of-line
pointer, so when it sees $00, it thinks it’s reached the end of
a BASIC line. Again, the program might end up
misdirected. The value $22 happens to be the ASCII value
for a quotation mark, and more than two quotation marks
will cause a dreaded syntax error.

The value $00 is the opcode negate direct; you won't use
that much. But $22 is, unfortunately, PSHS, and that one’s
almost unavoidable. Have a look at this program, and when
you're done, I have one more. Study them both before the
next session.

Program #33

Program #33, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S}
and find {F}. When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

A=Q: X=Q:B=0:C=@

A$="THIRTY-FIVE CHARACTERS ARE NEEDED!'!"

A=VARPTR (A%$) : C=E56% (PEEK (A+2)) +PEEK (A+3)
FORX=1TOLEN (A$) : READES : B=VAL (" &H"+E$)
POKEX+C—1, B:NEXT : DEFUSR@=C

CLS:PRINT:PRINT"YOUR BORDER CHARACTER"

INPUT"ENTER A NUMBER FROM @ TO 255";A

IFA (@DRA) 2SS5THENT : ELSEM=USR@ (A)

FORN=1TO1Q@@:NEXT:60T0O6

i@ DATAED, B3, ED, BE, @4, @0, 86, =1,E7, 8@, 4A, 26, FB, 3@, 1F, 86, @E, 30
11 DATABS8, 1F,E7, 8@,E7, 84, 4A, 26,F6, 86, 2@, E7, 8@, 4A, 26, FR, 39

Gom~Nnu e e

Learning the 6809 189

190 Lesson 21

What was I saying? Oh yes. Interrupts. Let me take you
back to Sam’s Kitchen in Roadside, New Jersey, where you
can honk for drive up service from noon to 6. Have another
listen to Marge at work . . .

Marge: One fries, two BLTs, three chili dogs . .. <honk>
Alright, alright . . . and one onion rings. Get those ready.
There’s a guy out there honkin’ that thing like Little
Richard. <outdoors> Yeah, what’ll you have?

Car one: Three burgers, two fries, a shake.
Marge: Ya want bunny burgers or buddy burgers?
Car one: One bunny burger, two buddy burgers.

Marge: <indoors> One bunny, two buddies, fries. Where’s
my order? <at counter> Anything else, Joe? How ’bout
you, Mac?

Mac: Yeah, gimme another dog, will ya Marge? With onions
an’ cheese, too.

Marge: Cheese dog onions.

Kitchen: Orders up.

Marge: Hey where’s my steak? And what about . . .
<honking> . .. the chili dog. Damn. Gotta get that. yeah,
yeah, whaddaya want?

Car two: Gimme three bunnies and. .. <honking from third
car>

Marge: <to third car> Hey fell ’'m busy. Sitonit till I get to
ya. <back to car> Three bunnies. What else, and make it
quick.

Learninsthe6809

What was [saying? Oh yes,
Interrupts. Having been to
Sam’s Kitchen twice, you should
have an idea that interrupts are
crucial to special kinds of
programming. But what kind of
progras would dewand such fancy
footwork? If the programming is
so tricky, why bother?

¥ Three things happen when an
interrupt occurs, What are
they?

The wmicroprocessor finishes its
current instruction, saves
important information, and
follows programsing instructions
in response to the interrupt.

¥ What is the process of acting
on an interrupt called?

Servicing the interrupt.
% What causes an interrupt?

When an external signal line
changes from one to zero,

Can more than ome interrupt
occur?

Yes.

Which interrupt gets taken

care of first?

The one with higher priority.

191

NMI, FIRQ, and IRQ

¥ Can interrupts be ignored?
Yes.

% What permits the processor to
ignore an interrupt?

Masking the interrupt.

What determines whether an
interrupt is wasked or enabled?

The condition code register.

* What part of the condition
code register determines whether
an interrupt is masked or
enabled?

Bits 4 and b.
% What masks an interrupt?

Setting its condition code bit

to a one.

¥ What commands can be used to
affect the condition code
register directly?
ANDCC and DRCC, both immediate
instructions.

What
masks out
interrupts?

command specifically
{turns off) both

ORCC #55@ {binary 012310008},

% What comsand specifically
enables {turns on) both
interrupts?

ANDCC #8AF (binary 10101111},

Three things happen when an

interrupt occurs. What are
they?

The microprocessor finishes its
curvent instruction, saves
important information, and

fallows prograsming instructions
in response to the interrupt.

192 Lesson 22

Car two: How about filet mignon and truffles and leeks
vinaigrette . . .

The restaurant is the computer, and Marge is the
microprocessor. The cook and customers are program and
storage memory. The car horn was the interrupt. Marge
finished was she was doing, serviced the interrupt, and
returned to finish her previous task. When two interrupts
occurred, car two had a higher priority. Finally, the drive-
up interrupt was masked out except from noon to six.

The 6809E processor has one power-up reset signal, three
hardware and three software interrupts, plus two unique
instructions to synchronize itself with hardware interrupts.
All of these 6809 interrupts are possible on the Color
Computer, and some are already in use by BASIC.

The RESET control is used when the power is turned on to
the computer, or when the reset switch is pressed on the
back of the machine. It is a separate electrical connectionto
the 6809 processor, and the RESET cannot be masked by
software; it is always accepted.

The most important of the interrupts — that is, the
interrupt with the highest priority — is the NMI, or non-
maskable interrupt. It is a separate electrical connection to
the processor and, like RESET, it cannot be turned off by
software. It always commands the attention of the
processor.

Of next highest priority is the fast interrupt request, or
FIRQ. The FIRQ can be turned off in software by setting
bit 6 (the F bit) of the condition code register. ORCC #$40
can be used to set this bit, turning off the interrupt;
ANDCC #$BF can be used to clear bit 6 to turn on the
interrupt. When the FIRQ comes along, the condition code
register and program counter are put on the stack, and the
interrupt service routine is begun. The FIRQ is fast
because it leaves the remainder of the register stacking up
to the interrupt service routine. If a register is not used, it
won't need to be put on the stack. I'll talk about the
requirements for speed later on.

The interrupt with the lowest priority is called simply the
interrupt request, or IRQ. When a zero appears on this
electrical connection to the CPU, all the registers — what’s
known as the entire machine state — are saved on the stack.
This interrupt is turned off in software by setting bit 4 (the I
bit) of the condition codes, and turned on by clearing bit 4.
ORCC #$10 turns it off; ANDCC #$EF turns it on.

ORCC #$50 turns off both interrupts; ANDCC #$AF turns
on both interrupts.

You'll remember that I described indirect addressing by
explaining how the computer obtained its first instruction
after the power was turned on. The processor went to
addresses $FFFE and $FFFF, concatenated the contents,
and used that as the address of the first instruction. There

AR
THAT
MILLISECOND
, -
Ie2) 1 3\b
oy o 1
PC.
'3 Sk

are in fact seven such address pairs, called “vectors”.
Power-on reset plus each of the six interrupts has its own
vector from $FFF2 to $FFFF.

Here’s how these vectors look in the Color Computer:

FUNCTION VECTORS ADDRESS CONTENTS

RESET FFFE+FFFF AB27 < BOOT >
NMI FFFC+FFFD P19 --------
SWI FFFA+FFFB 9186 --------
IRQ FFF8+FFF9 PIC JMP 894C
FIRQ FFF6+FFF7 PIOF JMP ABF6
SWI2 FFF4+FFF5 P13 --------
SWI3 FFF2+FFF3 PIpp --------

The power-up RESET goes right to address $A027, a
location in Color BASIC which establishes all the
important parameters of the language.

NMI is not used by Color BASIC or Extended Color
BASIC, but three unfilled bytes in low RAM are reserved
for future use. The future use is provided because the NMI
is wired to connection #4 on the computer’s cartridge
slot.

Software interrupts SWI1, SWI2 and SWI3 are also left
undefined with three unfilled bytes at their vector
locations; they are used by debugging programs such as
ZBUG, part of your EDTASM+ cartridge. Yes, we will talk
about debugging . . . next time. On to the other
interrupts.

FIRQ, the fast interrupt, is hooked to one of the peripheral
interface adaptors, connecting to both the PIA’s interrupt
output lines. The input to the PIA’s interrupt control
signals are two: the carrier detection (CD) line of the RS-
232 communications interface, and the cartridge-in-place
(CART) connection, #8 on the computer’s cartridge
connector. This interrupt serves a dual purpose. When
FIRQ occurs, the vector concatenated from addresses
$FFF6 and $FFF7 point to address $010F; at address 010F
is the instruction JMP $AOF6, a location in the Color
BASIC ROM.

The slower interrupt IRQ is connected to the second
peripheral interface adaptor, also to both of its interrupt
outputs. The interrupt control inputs of this PIA are
connected to the horizontal synchronization (HS) and field
or vertical synchronization (FS) outputs of the video
display generator. Again, this interrupt serves a dual
purpose. When IRQ takes place, the address in vectors
FFF8 and FFF9 are concatenated to produce address
$010C. At $010C is found the instruction JMP $894C, an
address in the Extended Color BASIC ROM.

Learning the 589

6809 vectors

¥ Is there an interrupt that
cannot be masked (turved off)?

Yes,

* Yhat
masked?

interrupt cammot be

The non-maskable
N“I'

interrupt, or
What interrupt has the highest
priority?

The NI,

* What interrupt has the second
highest priority?

The fast
FIRQ.

interrupt request, or

* What bit of the condition code
register masks or enables the
FIR@?

Bit 6 masks or enables the

FIRG.

What information is saved when
the FIRE occurs?

The cordition code register and
progras counter are saved on the

stack.

* What is the lowest priority
interrupt?

The interrupt reguest, or IRG.

* What bit of the condition code
register masks or enables the
IRQ?

Bit 4 masks or enables the IRG.

* bhat information is saved when
the IR@ occurs?

All the registers are saved on
the stack.

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

193

Synchronization

* How does the program counter
find where to go to service the
interrupt?

From a vector, or address, in
the last 16 bytes of memory.

¥ What purpose does NMI serve on
the Color Computer?

Nones it is not used.

* bhat purpose does FIRQ serve
on the Color Computer?

It is used for the RS-232
communications carrier detection
line, and for the
cartridge-in-place connection on
the cartridge connector.

What purpose does the IRQ
serve on the Color Computer?

It is connected to horizontal
ard vertical synchronization
signals frow the video display
generator.

% Yhat are the terws for
vertical and horizontal
synchronization with respect to
the Color Computer,

Field sync (F§} and horizontal

sync (HS1,

% How often does the field sync
{F5) signal occur?

6@ times per second.

* How often does the horizontal
sync (H5) signal occur?

15,728 times per second.

What port address determines
which interrupt is fed through
to the 6889 processor?

Port address $FFQ3.

* What condition code bit masks
or enables the IRQ?

Bit 4 masks or enables the IRQ.

194 Lesson 22

In all these cases, the addresses in low RAM can be
changed or filled in, redirecting the interrupts to any
location in memory. You'll be using those addresses.

Now I’ve given you a formal description of the vectors and
the hookup, but I expect it doesn’t mean a whole lot to you
at this point. I'm going to continue with a detailed
description of how everything fits together into a neat
package, but first I want you to read the technical
information.

Read the MC6809E data booklet page 9 {NMI, FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page 10;
read the MC6847 data booklet page 13 {Field Sync and Hori-
zontal Sync). If you have the Color Computer Technical Refer-
ence Manual, read Section lll (Theory of Operation). Return to
the tape when you have completed the reading.

Read the MC6809 data booklet page 9 (NML FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page
10; read the MC6847 data booklet page 13 (Field Sync and
Horizontal Sync). If you have the Color Computer
Technical Reference Manual, read Section II (Theory of
Operation).

Now putting it together. By correctly writing data to the
PIAs, you can make it possible for the computer to detect
an RS-232 carrier, to detect the presence of a plug-in
cartridge, or to synchronize your programs to the video
display either horizontally or vertically. Allyouneed to add
is software.

I've got two demonstrations of this. The first is a
continuous on-screen software clock; the second, an
example of synchronizing the video display with
programming changes to the screen.

I'm going to put a clock in the upper right corner of the
video screen. It will be there no matter what else is
displayed on the screen, whether you're listing, entering or
editing a line, or running a BASIC program. It will even
keep running with certain machine language programs that
don’t turn off interrupts or change the vectors. I think I'd
like it to count in tenths of a second up to 99 hours, 59
minutes, 59.9 seconds.

You've read the data booklets, so maybe you're ahead of
me. Remember the video display generator’s field sync
(FS) signal, which is used for interrupting the processor.
The video display generator’s field sync signal occurs at
precisely 60 times each second. By enabling the interrupt
(bit 0 of port address $FF03),I canget an interrupt to occur
60 times each second. If I keep track of those ticks and

ez r0 maornss |
Courrare

update my screen with a new time every six interrupts, then
I've got a tenth-of-a-second clock. From a tenth-of-a-
second clock I can create a full real-time software clock.

Here’s the structure of the setup and interrupt service
routine:

1. Set aside some memory for the clock; it might be an
image of the actual display (such as 12:59:02.2).

2. Enable the 60-per-second interrupts.

3. On an interrupt, increment the sixtieth-of-a-second
counter. If the sixtieth-of-a-second counter passes 5,
increment the tenth-of-a-second counter, and clear the
sixtieth-of-a-second counter to 0. If the tenth-of-a-second
counter passes 9, increment the one-second counter and
clear the tenth-of-a-second counter to 0. If the one-second
counter passes 9, increment the ten-second counter and
clear the one-second counterto 0. If the ten-second counter
passes 5, increment the one-minute counter and clear the
ten-second counter to 0. If the one-minute counter passes
9, increment the ten-minute counter and clear the one-
minute counter to 0. If the ten-minute counter passes 5,
increment the one-hour counter and clear the ten-minute
counter to 0. If the one-hour counter passes 9, increment
the ten-hour counter and clear the one-hour counter to 0. If
the ten-hour counter passes 9 clear it to 0.

4. Display the new time to the screen; the re-display will
take place every sixtieth of a second, appearing as a
continuous display.

5. Clear the interrupt status at port $FF02.
6. Return from the interrupt.

The setup process has to clear the way for the interrupts
without getting interrupted in the middle of things. So all
interrupts go off right at the start; the address of your own
routine is placed into the RAM vector; the proper interrupt
signal (in this case, the 60-per-second FS) is enabled;
interrupts are re-enabled; and the setup routine returns to
BASIC. Earlier in the book I presented a map of the
computer’s input/output port bits. Bit 0 of control port
$FF03 provides for the FS signal to be latched as an
interrupt. So the whole routine might look like this:

ORCC #350 * Turn off interrupts
LDX #$START * Service routine start
STX $010D * Store after "JMP" in vector
LDA #337 * Value to enable FS
STA $FFA3 * Enable FS through PIA
ANDCC #SEF * Re-enable IRQ interrupt

%*

RTS Back to BASIC

That’s the setup. The interrupt service routine itself is
really quite simple; get the whole thing loaded into
EDTASM+, and then come back for a walk-through.

Learning the

A software clock

+ What instruction masks the
1RG?

ORCC #$1@ masks the IRD,

* What instruction enables the
1IRQ?

ANDCC #$EF enables the IRQ.

+ What instruction returns to
the progras in progress after an
interrupt has been serviced?

Return from intervupt, RTL.

% When IRR occurs, where does
the program counter obtain the
address of the interrupt service
routine?

From a vector in high memory.
* What is the IRQ vector found?

The IR@ vector is found at $FFFB
and $FFF9,

*# 0n the Color Computer, where
does the IRQ vector point?

The 1RG vector points to address
$818C.

* Where is $018C in the Color
Computer wemory map?

In RAM, on page $01.

In the Color Computer running
with BASIC, the service routine
shown in this example ends with
JNp $894C. Where is $094C in
the Color Computer memory map?

$894C is in the Color BASIC
ROM.

* Why does this service routine
end with JWP $894C instead of
RT1?

Because the interrupt stiil has
to be used by BRSIC for the
cursor flash and the TIMER
comsand.

6809 s

Program #34

Program #34, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S} and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. If the right-hand side
of the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the program’s start and try again. For severe
loading problems, see the Appendix.

3Fee ee1ee ORG $3F0Q
2@11e *
3Fe@ 1A Se @@i1z@ INTOFF ORCC #$50 * TURN INTERRUPTS OFF
3Fez BE 3F1Q oe13@ LDX #START * POINT X TO SERVICE ROUTINE
3F@S BF @1@D e@1 4@ STX $@1@D + STORE ROUTINE TO IRR VECTOR
3Fe8 86 37 ee1S0 LDA #6637 * VALUE Q@11@111 FOR MASKING
3FeR B7 FF@3 evie@ s7A $FF@3 * TURN ON VERTICAL SYNC
3FeD 1IC EF Qo172 ANDCC ~ #$EF * TURN INTERRUPTS ON
3FeF 39 e018@ RTS # AND BACK TO BASIC "OK*
2190
3F1@ BE 3F77 @@z0@ START LDX #IMAGE+1@ * PDINT X TO 1/1@ SEC.
3F13 C6 3@ onz1@ LDE #$30 * B BECOMES ASCII OFFSET
3F1S 6C 84 eozee INC . X * INCREMENT 1/1@ SECONDS
3F17 RE 84 eoz3a LDA 5 X * GET 1/1@ SECONDS VALUE
3F19 81 36 eezs@ CMPA #$36 * 1S 6/1@ SECONDS COUNTED?
3F1R 2D &C eezS@ ELT ouT * IF NOT 6/1@ SECONDS, OUT
3FID 8D 4@ eezea BSR DEC1 % ELSE BAC UP 1 MEM. LOCATION
3FiF 81 3R eez70 cMPA #$30 % IS IT 1 SECOND YET?
3F21 8D 26 2ezee BLT ouT * IF NOT 1 SECOND, OUT
3F23 8D 4t eezge BSR DECE * ELSE BACK UP & MEM. LOCNS.
3F25 81 3R ee3oe cMPA #E30 % IS 1T 1@ SECONDS YET?
3FE7 2D 2e 20312 BLT ouT % IF NOT 1@ SECONDS, OUT
3F29 8D 34 ee3za BSR DEC! * BACK UP 1 MEM. LOCATION
3FEp 81 36 Qe330 cmpA #4536 * 18 1T 6@ SECONDS YET?
3F2D @D 1A ea34@ ELY out # IF NOT 6@ SECONDS, OUT
3F2F 8D 35 2e3se ESR DECZ # ELSE BACK UP & MEM. LODCNS.
3F31 81 3A en36e CMPA #$30 * IS 1T 1@ MINUTES YET?
3F33 2D 14 eez7@ ELT ouT % IF NDT i@ MINUTES, OUT
3F35 8D 28 eo36e ESR DEC1 * ELSE EACK UP 1 MEM. LOCATION
3F37 81 36 @390 CMPA #$36 * IS 1T 6@ MINUTES YET?
3F39 @D ©oF Q04 BLT ouT * IF NOT 6@ MINUTES, DUT
3F3R 8D 29 @@si@ ESR DECE * ELSE BACK UP 2 MEM. LOCNS.
3F3D 81 3A Qas2e cMPA #$3A * IS IT 1@ HOURS YET?
3F3IF 2 28 ae43@ BLT ouT * IF NOT 1@ HDOURS, OUT
3F41 8D 1C QR 44@ ESR DEC1 * ELSE BACK UP 1 MEM. LOCATION
3F43 81 3A Q45 cMPA #$3A * IS IT 1@@ HOURS VET?
3F45 2D @2 pas6@ BLT ouT % IF NOT 1@@ HOURS, OUT
3F47 E7 84 a@47@ STH L X * PLACE $3@ (ASCII ZERD)
w482 *
3F49 128E 0416 22490 0UT LDY #$0416 # POINT TO RIGHT SCREEN
3F4D 8E 3F6D eesen LDX #IMABE * POINT X TO CLOCK IMAGE
3F5e C6 @A aes1a LDE #80A # COUNT 1@ SCREEN POSITIONS
3FS2 A6 B@ ebsze LOOP LDA o X+ * GET CHARACTER FROM CLOCK
3FS4 A7 AR oS3 STA LY+ * AND PLACE IT ON THE SCREEN
3F56 SA 2RS4 DECE * DONE WITH IMAGE YET?
3F57 26 F9 eessa EINE LOOP * IF NBT, THEN BET NEXT CHAR.
Q06 *
3F59 B6 FFO2 22570 LDA $FF@2 # CLEAR VERT. SYNC LATCH
3FSC 7E 894C eesse Jmp $894C * AND TO BASIC TO DO RTI
22590 *
3FSF E7 B84 2ecee DEC1 STE , X * PLACE $3@ (ASCII ZERD)
3F61 6C B2 eec1e INC ,—X * BACK UP ONE MEM. LOCATION
3IFE3 A6 84 euesa LDA . X * BET VALUE FROM IMAGE
3FES 33 eE30 RTS * BACK TO MAIN PROBRAM
20640 *
3FE6 E7 B4 20652 DECE STH 5 X * PLACE $3@ (ASCII ZERD)
3F68 6C 83 QOEER INC , ==X * EACK UP TWO MEM. LOCATIONS
3F6A A6 B4 ewe7@ LDA . X * GET VALUE FROM IMAGE
3FEC 39 eeesw RTS * BACK TO MAIN PROGRAM
00630 *
3F6D 3@ 02700 IMAGE FCC /00:22:00. 00/
3@
2A
30
30
3A
30

196 Lesson 22

3a
2E
3@
3@
QR71@ *
3Faa aQ7ze END
2eRe@d TOTAL ERRORS
DEC! 3FSF
DEC2 3F66
IMARGE 3F&D
INTOFF 3Fee
L0op 3F32
ouT 3F49
START 3Fi1@

INTOFF

The opening is the 16-byte setup routine, turning off
interrupts, redirecting the interrupt vector to my interrupt
service routine, passing through the 60-per-second
interrupt, turning on interrupts, and returning to BASIC.

The service routine itself is a strung-out series of
increments and comparisons. The sixtieth-of-a-second
clock image in memory is incremented and tested for $36
(the ASCII value for the character 6). If it’s less than six, out
it goes; otherwise, it begins a down-the-line test. Notice in
the DEC1 and DEC2 routines the use of an indexed pre-
decrement command; right along you've been seeing the
post-increment commands such as LDA ,X+, but this is the
first time the pre-decrement has turned up. Since this
routine is bumping backwards in memory (from sixtieths of
a second up to tens of hours), a decrement is needed.

Check the sequence in the subroutine:

STB X
INC ,-X
LDA X

The value in B (an ASCII zero}) is stored in memory pointed
to by X. The X pointer is decremented and then its
contents are incremented. Two things of complementary
character are here — the pointer is first decremented, then
its contents are incremented. And finally, the A
accumulator is loaded with the contents of the memory
location now pointed to by X.

After all the increments, tests and updates are complete,
the memory image of the time is transferred to the screen.
Inline 490, Y points to location $04186 on the screen, and X
points to the updated clock. A short loop transfers the
information.

Finally, the command LDA $FF02 resets the latched
interrupt from the PIA. In yourreading of the MC6821 data
booklet, page 8, this was mentioned. I'll read that
paragraph. “The four interrupt flag bits are set by active
transitions of signals on the four interrupt and peripheral
control lines when those lines are programmed to be inputs.
These bits cannot be set directly from the MPU data bus
and are reset indirectly by a read peripheral data operation
on the appropriate section,” In other words, flags go up
inside the PIA when an interrupt takes place; by reading
from the PIA, the flag goes down. LDA $FF02 reads from
the PIA and turns off the interrupt flag.

Auto pre-decrement

the RTI
of an

What happened to
reeded at the end
interrupt? Where is it?

The RTI is found in the BASIC

ROM after it finishes with the
cursor flash and timer update.

* When using the MC6B21 PIR to
cause the interrupt, what is
also necessary at the end of the
service routine?

The PIA's interrupt latch must
be reset.

+ What would happen if the latch
were not reset?

No further interrupts would pass
through the PIR to the
ProCessor,

¥ What two addresses are used by
the PIA that handles the IRQ?

Addresses $FF82 and $FF@3.

* What commsand resets the
interrupt latch?

Rny command that reads from port
address $FF@2, such as LDR
$FFa2,

What does IR0 mean?

IRQ means interrupt request.

What does PIA wean?

PIA weans Peripheral Interface
Adapter.

+ What do FS and HS mean?

FS means Field Sync and HS means
Horizontal Sync.

Learning the 6809 197

Interrupt vectors and BASIC

* What does VDB mean?

VDE means Video

Benerator.

Display

+ What does A/IN/AD mean?

Assemble into memory at the
absolute origin specified in the
source listing.

% Three things happen when an
interrupt occurs, What are
they?

The microprocessor finishes its
current instruction, saves
important information, and
follows programsing instructions
in response to the interrupt.

198 Lesson 22

The last instruction (JMP $894C) might not make sense to
you. You probably expected a return from interrupt
instruction (RTI). Let me explain. You'll recall that the
interrupt vector for IRQ goes to address $0110inlow RAM
for its instruction. At that location is found the instruction
JMP $894C. In order for this time display program to work
properly with BASIC, it must chain itself to BASIC’s
vectors. That vector and the subsequent JMP $8%4C
controls the cursor flashing, among other things. So it’s go
to be there. By replacing JMP $8984C with the JMP $3F10
that gets the time display routine going, the program has
intercepted a vital part of BASIC’s operating system. To
keep the link from IRQ vector $0110 to ROM location
$894C, this program intercepts $0110, patches itself in
place, and finishes by jumping to $894C. The chain is
complete; the time is displayed and BASIC has its cursor.
BASIC finishes by executing the return from interrupt
(RTD).

I think it seems simple enough. Give it a try. Assemble this
program in memory at the correct origin. Type A/IM/AO
and hit enter. The program will assemble into memory.
When it’s finished and the cursor has returned, type and
enter Q. You will quit EDTASM+ and return to BASIC.
Protect memory now; this program resides from $3F00 to
$3F77, so protect from $3F00 on up. Type and enter
CLEAR200,&H3F00. That's CLEAR200,&H3F00.

Ready? Type and enter EXEC&H3F00.

There’s the clock, ticking away in the upper-right-hand
corner of the screen. You can enter, edit and list and run
BASIC programs. Try a few short programs, and see how it
looks to have the clock in the corner.

When you're done with that, try one more test. Create a
BASIC program and CSAVE it to tape. I don’t care what
kind of program itis, and you don’t really even need to have
the tape running. I just want you to CSAVE something, and
keep an eye on the screen. Before the next session, figure
out what you see and why it must happen that way. Have
fun.

In this lesson, I'm going to turn to video display
synchronization achieved with interrupts. But please keep
something in mind as you review these past two lessons.
This may be the Color Computer you’re using, but it’s the
6809 processor you're learning to program. Although every
6809 processor is made with these interrupt capabilities
and signals, those interrupt signals might be wired in a
completely different way on another type of computer.
alternative internal wiring might also mean that the vectors
in memory would be changed and that the timing of the
interrupts would be more or less frequent. Chances are —
except for the method used to turn interrupts on and off,
which is a function of the 6809’s condition code register —
everything would be handled differently. Since you're
learning the 6809 on the Color Computer, I know these
programs will work for you. But if you change computer
systems, you'll have to apply the principles but not
necessarily the actualities of these interrupt sessions.

That said, it’s on to video synchronization. There are only
two unique instructions left to talk about on the 6809.
These are SYNC and CWAI.

SYNC and CWAI are similar instructions: both cause the
6809 to stop processing — that is, cease to follow program
instructions — and wait for an interrupt to occur. SYNC (for
synchronize) simply turns the processing off, to the point of
making it electronically invisible to the rest of the computer
components. SYNC is especially useful when connecting
multiple computers to the same memory; you can’t do that
with the Color Computer because all the necessary
connections aren’t there, but SYNC makes it possible for
some other 6809 computers to work as multiple processor
systems.

Like SYNC, CWAL! also causes the processor to stop, but not
immediately. CWAI (meaning clear condition code bits
immediate and wait for interrupt) first places all the
registers on the stack and then sets the E flag; the E flag
tells the processor that the entire machine state has been

Learning the G807

Dealing with interrupts is no
wore complicated than any
assembly programming. The only
hitches are getting to the
interrupt service routine and
back from it without any errors,
and, where timing is absolutely

critical, getting it over with
before it's time for wore
interrupts. The 6&-per-second

interrupt in the last lesson's
clock progras was leisure tiwe
at its most relaxing compared

with the oprogram in this
lesson!
* What is the process of acting

on an interrupt called?
Servicing the interrupt.

How does the oprogram counter
find where to go to service the
interrupt?

From a vector, or address, in
the last 16 bytes of memory.

What purpose does the IRQ
serve on the Color Computer?

It is conmected to horizontal
and vertical synchronization
signals from the video display
generator.

199

Port bits

® What the terms for
vertical and horizontal
synchronization with respect to
the Color Computer?

are

Field sync (F5} and horizontal

sync (HS),

¥ How often does the field sync
(FS) signal occur?

6@ times per second.

* How often does the horizontal
sync (HS) signal occur?

15,728 times per second.

* What port address determines
which interrupt is fed through
to the 6889 processor?

Port address $FFB3.

% What condition code bit masks
or enables the IR?

Bit 4 masks or enables the IRQ.
the

* What instruction masks

IRQ?
ORCC #%$10 masks the IRQ.

¥ What
1RG?

instruction enables the

ANDCC #%EF enables the IRG.

+ What instruction returns to
the program in progress after an
interrupt has been serviced?
Return from interrupt, RTI.

+ What is the IRB vector found?

The IRG vector is found at $FFF8
and $FFF9,

On the Color Computer, where
does the IRG vector point?

The IRG vector points to address
$018cC.

200 Lesson 23

saved on the stack. The CWAI instruction also keeps the
processor active with respect to the outside world; there is
no “invisibility” with CWAL.

The effective similarity between SYNC and CWAI, then, is
that they both stop the processor’s operations and wait for
an interrupt to occur. The effective difference is that SYNC
just stops the operation, whereas CWAI also presets the
condition codes and saves all the registers.

T'll be using SYNC for these demonstrations. You might be
wondering why stopping the processing with SYNC would
be preferable to the straightforward use of an interrupt as 1
showed you in the last session. With SYNC, you can
complete all the programming work you need for a change
of video contents, then enter SYNC mode and wait for
further instruction. The amount of time you’ve got for the
program and the timing of the interrupts becomes more
important as you write the program, but lets the program
work more effectively.

Let me turn back to the peripheral interface adaptors, the
PIAs, and their control registers. Addresses $FFO1 and
$FF03 have the important information:

i} # = disable interrupt, 1 = enable
interrupt request to processor.

1 p = falling transition, 1 =
rising transition sets IRQA/BI
output.

2 @ = data direction register, 1 =
control register; established at
power-up.

3 One of 3 pair of binary select

signals for control of the analog

multiplexer (see technical manual
for details).

Establishes CA2/CB2 as output

controlled by bit 3 -- always 1

on Color Computer

6 Interrupt flag when CA2/CB2 is an
input; not used on the Color
Computer.

7 Interrupt flag from CAl/CBl --
vertical or horizontal TV
synchronization.

4,5

Now that you know, what do you do with it? I've got to get
technical on you. This is one of those times when hardware
meets software, and in order to program what you need,
you've got to understand what’s going on.

The television screen display isn’t a fixed image of some
kind, but rather the result of a single, constantly moving
electron beam aimed from the back and sweeping across

the front of a glass tube. As the beam sweeps by, rare-earth
elements known as phosphors are excited by the beam and
glow blue, green or red.

By depending on the mixing of the primary colors of blue,
green or red (technically called cyan, green and magenta),
and also on our eyes’ persistence — that is, the ability to
retain an image for a small fraction of a second — a
complete, multi-colored picture seems to be formed.

If you look at the front of the picture tube with a magnifying
glass, you can see the separate colors. By moving your hand
quickly in front of the screen, you can see the image “‘break
up” as your hand’s outline is strobed by the changing
screen image produced by that moving electron beam.

There’s only one electron beam, and it’s moving fast. It
sweeps across the screen, changing color and brightness as
it goes, then turns off, sweeps back, turns on, and draws the
next line. It draws 262 lines altogether, all the while keeping
those lines separated by moving siowly down the screen;
one screen full of lines is called a “field”. At television
speed, “slowly” is only a comparative term, because the
beam goes from top to bottom of the screen 60 times each
second. On the Color Computer, that’s 15,720 lines drawn
every second.

What keeps all this happening at the correct time and keeps
the beam at the correct place on the screen is known as
synchronization. The electrical signal that tells the beam
when to start each line across is called horizontal
synchronization, or horizontal sync. The signal that tells
the beam when to get to the top of the screen and start the
next field is called vertical synchronization, or vertical
sync. Although it would be simpler to call these horizontal
sync and vertical sync, 'm not going to do that. I want to
avoid confusing these sync signals with the 6809 processor
command SYNC.

The MC6847 video display generator, the VDG, creates
horizontal and vertical synchronization, and also another
signal called field synchronization. Field synchronization is
the time between the end of the active display (the very
bottom right of the green block that makes up the display
screen) and the top of the screen (25 lines before the start of
the green block).

For a complete look at all this, open your MC6847 videc
display generator data booklet, and turn to page 11. On
page 11 of the MC6847 data booklet, you can see the
relationship between the blank areas and the active display
area. Take a few minutes to examine Figures 13 and 14.

Learning the 6&)9

Lines, fields and sync

% Where is $Q18C in the Color
Computer wemory map?

In RAM, on page $@1.

* When using the MCEB21 PIA to
rause the interrupt, what is
also necessary at the end of the
service routine?

The PIA*s interrupt latch must
be reset.

* What two addresses are used by
the PIA that handles the IRD?

fddresses $FFE2 and $FFQ3.

What cosmand resets the
interrupt latch?

Pny commard that reads from port
address $FF@2, such as LDA
$FFe2,

What actions does the SYNC
instruction cause?

It causes the processor to stop
processing instructions and wait
for an interrupt to occur.

* What actions does the CWAI
instruction cause?

It ANDs the condition code bils
with a value, places all the
registers on the stack, sets the
£ flag, stops further processing
and waits for an intervupt.

* How are the software actions
of SYNC and CWRI alike?

Both stop further processing and
wait for an interrupt.

How are the software actions
SYNC and CWAI different?

WAl (Clear and MWait for
Interrupt) performs logical and
stack operations, whereas S5YNC
{Synchronize with Interrupt)
does not.

201

Using FS and HS interrupts

* How are the hardware actions
of SYNC and CWAI different?

CWAL keeps the processor active
with respect to the outside
world (to the other circuits);
SYNC makes it electronically
invisible {called a tri-state
condition).

How many horizontal lines does
the electron beam draw on the
video display screen?

262 horizontal lines are drawn
on the screen.

* What is one complete group of
262 lines called?

One group of 262 lines comprises
a field.

* What is the "green block® in
the center of the video screen?

The “green block" is the active
display area.

How many horizontal electron
beas lines comprise the active
display area?

192 horizontal lines make up the
active display area.

¥ How many fields of 262 lines
are drawn each second?

68 fields are drawn each

second.

* How many lines are drawn each
second?

262 lines times 60 fields, or
15,728 lines are drawn each
second.

* What controis the horizontal
lines and vertical fields?

The Video Display Generator, the
VD6,

202 Lesson 23

Turn to page 11 in the MC6847 video display generator (VDG)
data booklet and examine Figures 13 and 14, which present the
active display area of the Color Computer. Familiarize yourself
with the number of horizontal lines and their arrangement. Re-
turn to the tape when you have completed the reading.

Don’t bite your lip; this is all going to fit together very
shortly. When you know about field synchronization and
horizontal synchronization, you know two important
things. The first thing you know is the time when your
processor is free to make its calculations, scan the
keyboard, and so forth. That time falls between the end of
the active display area and the top of the screen. And that
time starts when field synchronization (FS) goes from one
to zero, and that time ends when F'S goes from zero te one.
The 6809 processor can find out when FS changes.

The second thing you know is when the beam starts at the
left of the screen and when it ends at the right. It starts
when horizontal synchronization (HS) goes from one to
zero and ends when HS goes from zero to one. The time
when HS is off the screen very short, however (about one
CPU clock cycle), so in effect, the important time is the
start of the HS period, when HS goes from one to zero. The
6809 processor can find cut when HS changes.

So here’s an outline of the features as they relate to
software,

1. FS goes from high to low. You're out of the
screen and free to calculate and perform other
operations.

2. FS goes from low to high. You've got to
start paying attention to screen lines.

3. HS goes from high to low. The screen has
started.

4. Count 38 HS pulses and you're in the
display area.

5. 192 HS pulses make up one active screen.

6. Repeat it all 60 times and you've got one
full second of programming.

Now it’s getting closer. Feed through the vertical or field
synchronization to the processor’s interrupt, and execute
the SYNC command. When it occurs, execute a vertical
synchronization service routine. That routine should turn
off that feed-through and turn on the horizontal
synchronization feed-through. Create another interrupt
service routine for the horizontal synchronization. Begin

counting until you reach the top of the active display area.
Then you can change the display and count screen lines in
short programming bursts, ending each with SYNC. When
you have counted 192 lines, the screen display area is
completed. You can turn off the horizontal feed-through,
turn back on the vertical synchronization feed-through,
return to the main loop for your calculations and more
sophisticated programming. When that’s done, you can
execute the SYNC command and wait for the process to
start all over.

A practical example is the only way of understanding what
this is good for and how to use it. Before that, though,
please review this lesson so far, reread the control register
information in the MC6821 peripheral interface adapator
data booklet, and re-examine the screen outline on page 11
in the MC6847 data booklet.

Review this lesson. After reviewing, read the control register in-
formation in the MC6821 data booklet, pages 7 and 8. Also
continue to become familiar with the screen outlines on page 11
of the MC6847 VDG data booklet. Return to the tape when you
have completed the reading.

The practical example I've got is about as impractical as
they come in some respects. It shows a bunch of random
colors and shapes on the screen, together with
alphanumerics. There are standard letters and characters
(black on green), high resolution color graphics, more
characters (black on red), medium resolution color
graphics, and more characters. The trick is that all of them
are displayed on the same screen at the same time.

Getting a mix of high-resolution graphics and standard
alphanumerics on the screen at the same time is a simple
function of synchronizing and counting. If you synchronize
to the vertical synchronization pulse, you know where the
screen starts. If you synchronize to the horizontal
synchronization pulse, you know where each of the 192
screen lines is. If you are familiar with your graphics modes,
then you know what character is where on what line.

All that's left is the implementation. My example presents
two rows of alphanumeric characters, a 192 by 48 block of
high resolution color graphics, two more rows of alpha
characters (but in red instead of green), a 64 by 16 block of
medium resoclution color graphics, and three rows of alpha
characters. 1 haven’t filled memory with anything in
particular, so it’s just random junk. But the junk’ll be
moving. Load the source code. I'll take you through it, and
do some explaining.

Mixing graphics modes

vhat is FS5 (Field Synchron-
ization) on the VDG?

The time between the end of the
active display area and the top
of the screen.

When does FS go from high to
low {one to zero)?

When the electron beam leaves
the active display area.

* When does FS go from low to
high {(zero to one)?

when the electron beam reaches
the top of the screen.

When does HS5 go from one to
zero?

When the electron beam begins
drawing a line on the screen.

* When does HS go from zero to
one?

when the electon beam finishes
drawing a line on the screen.

* According to the MCBB4T data
booklet, how many HS pulses
occur before the “"green block”
-~ the active display area --
begins?

38 HS pulses occur before the
active display area begins.

Hw many HS pulses occur
during active display (within
the “"green block")?

192 HS pulses occur within the
active display.

According to the MCBA4T data
booklet, how many HS pulses
occur after the active display
area ends?

32 HS pulses occur after the
active display area ends.

Learning the 6809 203

Program #35

204

Lesson 23

Program #35, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, typle L and press ENTER. The computer will
search {S) and find (F). When the cursor reappears, display the
program. Type P#:* and press ENTER. [f the right-hand side of
the program is not similar to the listing, or if an I/0 error occurs,
rewind to the program’s start and try again. For severe loading

problems, see the Appendix.

IFaa

IFoQ
SFas
3F@QS
IFaa
IFQB

3FeE
3Fla
3F13
3F14
3F17
3F1A
3F1D
3IFz@
3F23
3Fe5

3Fc6E
3F29
3FeH
3FED
3F2E

3F2F 2

3F.31
3F33
3F36
3F39

3F3C
3F3E
3F3F
3F4@
3Fa4z
3F44
3F47
3F4A

iR
BE
EF

BF

agac
@3
D4z
282
FFaa
FFag
FF@1
FFa3
@1@D
FFCa
FFC1
FFCE
FFC3
FFC4
FFCS
FFaz

S@

21@p
3FC8
IF7D
2a1@D

36
FFai

FFa3
FFCA4
FFL2
FFC@
3F7F
EF

3FS4

EF

FC
FFee

FFCS
FFLC3

3e

FC

FFaz
FFC4
FFCE

Qaaiea
aalL1a
aaiza
a1 3a
@al4d
2a15a
QRI6R
aaive
aal8e
a@1i9a
aazak
@

ROW EGQU 1z
BORDER EQU 35
HIRES EQU $Q4CQ
vVIDTOP EQU +080@
CLEARRH EQU $FFoa
CLEARV EQU $SFFag
HSPORT EQU $FF@1
VSPORT EQU $FF@3
VECTOR EQU s@ieD
VibCLe EeQU $FFC@
vIDST@a EQU $FFCIH
VIDCL1 EQU $FFC&
VIDST1 EQU $FFC3
VIDCLE EQU $FFC4
VIDSTE EQU $FFCS
VIDPRT EQU SFF2E
*
ORG s3IFa@
*
* BGET & SAVE BASIC VECTOR
* PLACE THIS VECTOR
BEGIN ORCC H$5Q
LDX VECTOR
STX STOREV
LDX #HINTER
8TX VECTOR
*
* INTERRUPTS DFF.
* HORIZONTAL SYNC OFF.
* VERTICAL SYNC ON.
* SELECT ALPHR MODE.
* INTERRUPTS ON.
* WAIT FOR VERTICAL SYNC.
STAR LDA H#$36
STA HSPORT
INCAR
8TA VSRORT
8TA VIiDCL.e
8TA VIDCL 1
sS7A vibcLe
LDX #SCREEN
ANDCC #SEF
SYNC
*
% WAIT FOR HORIZ. SYNC.
#* COUNT EBORDR + 24 LINES.
CHANGE TO 128X13& COLOR
LDX #L.INE
LDE #EORDER+Z#R0OW
ANDCC #EEF
LooP1 SYNC
DECE
ENE LO0OP1
LDA HSEF
STA VIDPRT
STA viDsTe
STR VIDST1
*
WAIT FOR HORIZ. SYNC.
* COUNT 48 LINES.
* CHANGE TO ALPHA MODE.
LDE #4%R0OW
LoopPz SYNC
DECE
BNE LO0OPZ
LDA H#$0OF
STR VIDPRT
STA vibCLa
8TR VIDCL

3F4D
3Fa4F
3F50
3F51
3F353
3F55
3F58
3FSB
3FSE

3F61
3F63
3F64
3F65
3F6e7
3FE9
3FeC

3F6&F
3F71
3F72
3F73

3F75
3F77
3F7A

3F7D

3F7F
3F8z
3F84
3F87
3F89
3F8c
3F8D
3F9e
3F93

3F34
3F97

3F398
3F3B
3F9F
3FAL
3FA3
3FARS
3IFR6
3FA8
3FAB

ce
i3
5A
26
86

B7

iA

7E

6E

B6
3R

i8

FC

FFae
FFC4
FFC2
FFC1

32

FC
27
FFaz
FFC@

3a

FC

Se
3F98
3FQE

a4

FFa2
Q7
FFae
36
FF@a3

FFai
FF@@

FFa@

3Fce
3FC4
FUN

8e
F9

2800
@p

a7%@
aoBee
ezs1@
aadza
ea83a
aaB4@
oe8se
aa86Q
aas7e
agsaa
2089¢
2esee
aas1@
agsze
2e33e
Qa94&
2a9Se
aasea
aug7e
2assa
20992
o100
e1a1e
1020
eia3e
2104@
a1ase
21060
a1a7e
@l1es80
Qiasae
al10Q
@111@
@eiize
21136
21140
@115@
a1i6@
2117@
@l18a
@119@
_aizee
elzie
aizaa
@ai1230
a124@
Q1ES@
o126@
@a1z27@
a1z8@
el1z9e
ai13ea
a1310
a1320
@1330
Q1340
21352
@136@
e137e
@138@
2139
at40@
1410
a142Q
@143@
@l1440Q
@145
2146@
ar470
@1480
@143@
ai15e@
@i5i@
2132@
21538
@1548
2155e
28156
e157e
2138@
21592
21600
@161

COUNT 24 LINES.

*
+ WAIT FOR HORIZ. SYNC.
*
*

CHANGE TO 6&64X64 COLOR.

L.DB
LOOP3 SYNC
DECE
ENE
LDA
8TA
STR
8TA
5TA

*
*
*
*

LDE
LOOPA SYNC

DECB

BNE

LDR

STAR

STA
*

R2#ROW

LOOR3
#$BF
VIDPRT
vibCLe
VIDCL1L
VIDST@

WAIT FOR HORIZ. SYNC.
COUNT 48 LINES.
CHANGE TO AL.PHA MODE.

#4%R0OW

1.00P4
#$07
VIDPRT
viDcLe

* WAIT FOR HORIZ. SYNC.
COUNT 48 LINES.

LDE
LOOPS SYNC
DECB

#4#R0OM

LOOPS

DO EBYTE FINAGLE STUFF.

*
* INTERRUPTS OFF.
*
*

START IT ALL ABGRIN.

STOP ORCC #3350
JSR INCREM
Jmp STAR

*

+ SUBROUTINES FOLLOW.

JUMP DFFSET INDEXED.

* X POINTS TO RDUTINE.

INTER JMP o X

*

CLEAR FIELD SYNC LATCH.

SELECT ALPHA MODE.

* TURN VERTICAL SYNC OFF.

% TURN HORIZ. SYNC ON.

* CLEAR HOR. SYNC LATCH.

BACK TO MAIN PROGRAM.

SCREEN LDA CLEARY
LDR #$07
STA VIDPRT
LDA #$36
sTA VSPORT
INCA
STA HSPORT
LDA CLEARH
RTI

*

CLEAR HOR. SYNC LATCH.

* BACK TO MAIN PRDGRAM.

LINE L.DR CLERARH
RTI

*

BYTE-FINAGLE ROUTINE.
BLOCK MOVES $44 BYTES
* AT A TIME, CONTINUING
* UNTIL #VIDTOP IS

+ REACHED.

* RESETS STORAGE AND

* STRART LOCATIONS,

INCREMENTS Y TO NEXT
BLOCK MOVE POINT.

I

NCREM LDX XSTORE
LDY YSTORE
LDE Be44
FILLUP LDA s Y+
STAR y X+
DECB
BNE FILLUR
CMpPX #VIDTOP
BLT VIDMOR

Learning the

Program #35

205

Program #35

What happens at the end of the
active display area?

FS goes from high to low {one to
zero).

+ What PIA address handles the
FS interrupt?

Port address $FF@3.

* What PIR address resets the F5
interrupt?

Reading port address $FFGR.

What PIA address handles the
HS interrupt?

Port address $FF@1.
206 Lesson 23

3FAD BE @429 @ieze LDX #HIRES
3FE@ 1@BE 3FC6 ale3e LDY YHOLD
3FB4 31 21 a1642 LERY 1,y
3FB6 1@BF 3FCée 21652 sSTY YHOLD
3FBAR 1@BF 3FC4 21664 VIDMOR STY YSTORE
3FBE EBF 3FCe @ai167@ 8STX XSTORE
3FC1 39 @168 RTS
Q1698 *
3FCe 620 @17@2 XSTORE FDB sesoe
3FC4 [l @171@ YSTORE FDB seeoe
3FC6 QaQae @172@ YHOL.D FDB $200e
3FCa @173@ STOREV RMB a2
Q1748 *
3FCA @175@ 22722727 EQU *
@1760
3Fee @1776 END BEGIN

2@@e2 TOTAL ERRORS
BEGIN 3Fea
BORDER @023
CLERRH FF@@
CLERRV FF@2
FILLUP 3FAL
HIRES asze
HSPORT FF@1
INCREM 3F98
INTER 3F7D
LINE 3F24
LOOPL 3FE&D
L.oopz 3F3E
L.o0P3 3F4F
LODP4 3F63
LO0PS 3F71

I've prepared this source listing to make full use of labels,
Print the first screenful of lines; start with me at the top.

Internally, the MC6847 video display generator counts to
12, which is the number of horizontal lines that make up a
single alpha character position; so1label 12 as ROW. The
upper border is defined by the 6847, so I label that
BORDER. T'll be moving some display bytes around for
effect; these moving display bytes will start at memory
labeled HIRES and end at memory labeled VIDTOP.

The remaining are labels of key function addresses in
upper memory; scme you've seen before. As you have read
in the MC6821 data booklet, the horizontal
synchronization interrupt is cleared by reading $FF00 and
the vertical synchronization interrupt is cleared by reading
$FF02; they are labeled CLEARH and CLEARV. The
actual synchronization interrupts are fed through to the
6809’s IRQ line by writing enabling information to ports
$FFO1 and $FFO3, here labeled HSPORT and VSPORT.

The IRQ vector from high memory finds its commands as
the operand of the JMP at $010C, so $0610D is labeled
VECTOR.

There are six SAM addresses that control the video modes.
The odd addresses clear the mode bit to zero, the even
addresses set the bit to one. You know that. So mode bits 0,

1 and 2 are laheled VIDCLO and VIDSTO, VIDCL1 and

VIDST1, VIDCLZ2 and VIDST?2. Finally, the port address
for the remaining video controls is found at $FF22; it's
labeled VIDPRT.

Now display the last few lines of the program; begin at line
1500. P1500:* Labels XSTORE, YSTORE and
STOREYV are two-byte groups set aside for temporary
storage of video positions between vertical synchro-
nization pulses.

So now you know the pack of labels I've got here. I've tried
not to clutter this listing with lots of comments, so follow
with me now. The first block of code turns off all interrupts
which may have been enabled, and replaces the IRQ vector
at $010D in RAM with my interrupt service routine. In the
next block, horizontal synchronization interrupts are
turned off, vertical synchronization interrupts are turned
on, and alphanumeric video mode is selected.

The X register is loaded with a pointer to the vertical
synchronization service routine, interrupts are enabled,
and the processor enters SYNC mode. It now waits for the
vertical synchronization pulse to force an interrupt. When
the vertical synchronization interrupt occurs, the interrupt
service routine is entered.

. This routine finds the proper service by performing a zero-
offset indexed jump based on the contents of the X
register. Since X was pointed to the routine labeled
SCREEN, this routine is performed. The SCREEN
service routine clears the vertical synchronization latch,
selects alpha mode, turns off the vertical synchronization
feed-through, turns of the horizontal synchronization feed-
through, clears the horizontal synchronization latch, and
returns from the interrupt. It returns with everything set up
for being interrupted by the horizontal synchronization
pulse.

In other words, when the program starts, everything setsup
and waits for the SCREEN service routine, which
identifies the top of the screen and sets things up for the
262 horizontal interrupts.

The return from interrupt brings things back in the
program to where the X register is pointed to the LINE
service routine, the B registeris set up to count through the
screen border lines and 24 displayed lines. Remember I'm
talking about electron beam lines here, not the usual lines
of text. Interrupts are enabled, and the SYNC wait is on.

SYNC

¥ What PIA address resets the HS
interrupt?

Reading port address $FFo@.

What two items control the VDB
wodes?)

Port $FF22 and the SAM control
the various VDG modes.

¥ What is the general ters for
setting up the PIR or the VDG?

Configuring.

* After configuring the PIA for
interrapts and the VDG for
wmodes, the address of the
interrupt service routine is put
in place. How is that address
accessed?

Through the IR@ vector in high
BOmOrY.

% Where is the IRG vector in
high memory, and where does it
point on the Color Computer?
The IRB vector is at $FFFB and
$FFF9, and points to $QI8C in
RAM.

* What addressing mode is this?
Indirect addressing.

What does IRB mean?

Interrupt request.

* How often does the horizontal
interrupt HS occur?

15,720 times per second.
% ficcording to the MCHB47 data
booklet, about how long is

this?

It is approximately 63.5
wicroseconds.

Learning the 6809 207

Servicing SYNC interrupts

¥ How many 6889 clock cycles is
this on the Color Computer?

63.5 divided by 1.11746 is under
57 clock cycles.

* What actions does the SYNC
instruction cause?

1t causes the processor to stop
processing instructions and wait
for an interrupt to occur.

¥ What actions does the CHWAI
instruction cause?

It ANDs the conditon code bits
with a value, places all the
registers on the stack, sets the
E flag, stops further processing
and waits for an interrupt.

+ How are the software actions
of SYNC and CWRI alike?

Both stop further processing amd
wait for an interrupt.

¥ How are the software actions
SYNC and CWA!I different?

CWAI {Clear and MWait for
Interrupt) performs logical amd
stack operations, whereas SYNC
{Synchronize with Interrupt)
does not.

% How many horizontal lines does
the electron beam draw on the
video display screen?

262 horizontal lines are drawn
on the screen.

% What is one complete group of
262 lines called?

One group of 262 lines comprises
a field.

What is the "green block" in
the center of the videco screen?

The "green block" is the active
display area.

208 Lesson 23

The LINE service routine, arrived at through the zero-
offset-indexed jump, merely clears the horizontal interrupt
and returns. The B register is decremented, and if the
selected number of electron beam lines is not yet counted
through, SYNC is entered again. When the count is finished,
the video mode is changed, the row counter recharged with
a new value, and the SYNC state re-established.

There are five of these horizontal SYNC loops, each
changing the video mode after a specific number of
horizontal lines have been completed.

After the top border plus 192 horizontal lines, the active
display area is complete and interrupts are disabled by the
program. A short byte-move subroutine is called — you can
put anything you like here — which bumps some display
bytes around in the high resolution area. It lets you know
something is happening. After the return from that byte-
finagling subroutine, the process of vertical and horizontal
synchronization starts again.

There are some important things to know. First of all, the
horizontal interrupt occurs about ever 63.5 microseconds.
That means you’ve got just about 57 clock cycles to
perform your horizontal interrupt service routine. LOOP3
is the longest — T'll leave the calculations to you — but it
makes it.

The other critical timing depends on the value of B ($44 in
my example) used to count bytes moved between vertical
synchronization interrupts. In this case, $44 is the highest
number of moves I could fit between pulses.

Now keep in mind that this is a relatively crude
demonstration of the possibilities of video manipulation. If
you're interested in creating fast games or using powerful
graphics capabilities, this method should give you as much
power as any of the famous commercial game machines.

Now try it. Assemble this in memory by typing A/IM/AQ/
NL/NS. Assemble in memory at the absolute origin with no
listing and no symbol table displayed. That's A/IM/AO/
NL/NS. Inafew seconds, the prompt and cursor will reture.
Quit the editor/assembler by typing and entering Q. When
the BASIC sign on message appears, you're ready for the
demo. Type and enter EXEC&H3F00. That’s where it all
starts. EXEC&H3F00.

There’s your mixed-mode display with moving parts. Study
the listing and review this lesson; next time the trials and
tribulations of debugging, hints and ideas, and a summary
of what you have been learning. Till then.

Welcome back. Up to this point, you've been walking an
unfamiliar but well-lit path through assembly language.
When this road ends, though, you’ll be staring ahead into a
kind of wilderness. If you know the natural signs, the
footprints in the snow, how to feed and shelter yourself,
then you'll survive to create your own paths. This course
has been your outdoor survival training.

But that country isn’t like this city, so you'll need not only
the kit of tools — the editor/assembler, the data booklets,
and the knowledge — but you’ll also need something to cut
a path in the underbrush so you can see through the woods
and ahead to your destination.

That tool is a debugger. Sometimes called a machine-
language monitor, the debugger is a program which
displays memory contents, takes memory contents apart
and translates them into mnemonics, does calculations and
even steps through programs an instruction at a time.

The debugger is the “plus” in EDTASM+. This debugger
is called ZBUG; get it ready now. Turn off your computer,
insert the EDTASM+ cartridge, and turn the computer
back on. The usual star prompt and flashing EDTASM
cursor will appear. Type Z and press ENTER. The star
prompt has changed to a crosshatch. You are in the ZBUG
monitor. Now type E and press ENTER. Your star prompt
returns and you are back in EDTASM.

Start with a program; you’ll be doing the typing in this final
lesson. The program is shown in the book. Enter it with the
usual EDTASM insert-line mode (I), and assemble it to
memory at the origin shown (A/IM/AOQ):

ORG $3FpP
VIDED EQU $048p
COUNT EQU $0200

START LDX #VIDEO
LDB #COUNT
LDA #IFF
LogP INCA

fs I come to the end of this
course, it feeis to we like a
greal novel should be ending,
with its sterectypical sunsets,
tears or flowrishes. Rather
than that, it’s just some
debugging and susmaries, Maybe
iater for wmy Great American
Novel: for now, vou finish
learning the 6809,

What is ancther nawe for a
debugging program?

R machine language monitor,

¥ what is the name of the
machine language monitor that is
part of EDTASH+?

IBUG is the debugger.

k What is a breakpoint?

A stapping place in a machire
language progras inserted for

debugging purposes,

* What is used as a breakpoint
in IBUB?

The software interrupt SWI.

Learning the 6809 209

Debugging with ZBUG

¥ What happens when a program
encounters a software inter-
rupt?

All the registers are saved and
the program counter obtains the
SWI vector from high wemory.

¥ What is another name for "all
the registers"?

The machine state.

When an interrupt saves the
machine state, what flag does it
set?

The E, or entire state, flan.

* What is another nawe for a
machine language monitor?

A debugger.

* The following questions
summarize the concepts you
should have learned from this
course.

¥ How are machine language
impulses represented?

By ones are zeros.

¥ What numbers system consists
only of ores and zeros?

The binary systew.

% What is the abbreviation for
binary digit, and what is a
groug of four and a group of
eight binary digits called?

A binary digit is a bit; four
binary digits is a nybble
{nibble); eight binary digits is
a byte.

* What number systew is used in
programeing for the convenient
representation of binary
numbers?

The hexadecimal number systes.

210 Lesson 24

STA K+
DECB

BNE LooP
SWI

END START

When it’s assembled, enter ZBUG by typing Z and
pressing ENTER. Have alook at the assembly; your origin
was $3F00, so type 3FCO followed by a slash. 3F00/ reveals
LDX #VIDEOQ. When you do an in-memory assembly,
ZBUG references your labels. Start pressing the down
arrow. The program is being shown to you command by
command, with each labeled as in the program.

Type BREAK. Again type 3F00, but this time follow it with
a comma. Type a few more commas, and continue tapping
the comma quickly. Watch the screen carefully as you scroll
through the commands. Reverse-video characters begin to
appear and scroll up the screen. Eventually these change to
normal characters, and finally to graphics characters. The
program is executing step by step; the instructions . . .

LOOP INCA
STA X+
DECB
BNE LOOP

... are passing by and actually performing their functions.
Keep pressing the comma. It takes four taps of the comma
to produce one character, so you can see the repetitive
nature of this program.

The character of the program is already familiar to you. It’s
nothing more than a memory fill starting at $0480 and
continuing for 256 loop repetitions.

Now watch it work at full speed; go to the start. Type
G3F00 and tap ENTER. G3F00 ENTER. The screen gets
blasted instantaneously with 256 characters, and ZBUG
prints “8 BRK @ LOOP+6”. There's the software
interrupt command at work. Don’trememberit? Tap E and
return to EDTASM, and print the source code (P#:¥*) on
the screen.

Right before the END statement is SWI, the software
interrupt. This is what ZBUG uses for its breakpoints.
More about breakpoints in a minute; back to ZBUG. Type
and enter Z.

You've seen the labels in this listing. Now look at the actual
hex values. Type H and hit ENTER. Now type 3F00/ and
examine the display. Instead of symbolic notation using the
labels (it used to read LDX #VIDEO) you now see
LDX #480. Oh yes. The default notation in ZBUG is
hexadecimal.

Type S and hit ENTER. Now 3F00/ once again reveals
LDX #VIDEO. Another of these. Type B and ENTER.
3F00/ now shows 8E, the hexadecimal value at memory

@ELM?! D)
A

T~

location $3F00. Hitting the down arrow reveals labeled
locations with hexadecimal values. And finally, one more to
try. Type and enter A. Tap the down arrow and you see
ASCII characters.

There’s some preliminary work with ZBUG. Now you have
reading to do. Chapters 2, 5 and 6 of the EDTASM+
manual have a complete description of the features of
ZBUG. Read all the chapters and try the examples
presented in the manual. Pay particular attentionto the use
of breakpoints — stopping places in the program — and the
ways you can examine and change both memory and
register contents. This powerful debugger will make
finding those program glitches and endless loops lots
easier. When you’re done with the reading, come back for
some suggestions on using ZBUG, and for a final summary
of this course.

Using ZBUG is time consuming, but worthwhile. Youmight
get tired of going through a long delay loop, though. In a
case like this, use the register examination mode to change
the loop value so it’s almost done. Then you can continue
execution, and the loop will complete.

One type of program that is almost impossible to debug in
this manner is the interrupt-driven program. Enabling and
disabling interrupts can be done, but when it comes to their
actual execution, ZBUG will hang up, waiting for the
interrupts which will never come. So for this kind of
program, try your debugging by changing interrupts to
subroutines in key places, saving and restoring the entire
machine state (all the registers), and simulating the
interrupts.

With the ability to use multiple number systems, to provide
automatic calculations, to single-step your programs, and
to display memory and registers, ZBUG is your most
important tool — other than your own careful thinking and
programming — in completing working, speedy and
efficient assembly language programs. At the end of this
lesson, use ZBUG to examine and execute each of the
assembly language programs in this course.

jhaY

In this course you have learned that assembly language is a
representation of machine language, a carefully organized
pattern of electronic impulses. These electronic impulses
directly manipulate the actions of the microprocessor, and
are therefore extremely fast and can be organized to
perform any function which the computer’s hardware
permits. As patterns of electronic impulses, this kind of
programming is distinctly different from high-level
languages such as BASIC, languages which are in
themselves constructed from large-scale patterns of
machine commands.

Machine language consists of electrenic impulses which
are best expressed as one and zero conditions. The binary

Learning the

Examination modes

What does ASCII wean? What is
it used for?
ASCII weans Awmerican Standard

Code for Information
Interchange; ASCII is a binary
pattern of control codes and
characters used for computer
communication and display.

* What is the
organization of
called?

overall
a processor

The architecture.

Describe the architecture of
the 6889 processor.

The 6889 consists of an
frithmetic Logic Unit and an
Instruction Decoder; a program
counter PC, accumulators A and
B, index registers X and Y,
stack pointers 5 and U, direct
page register DP, and condition
code register CC; R and B can be
combined into accumulator D.

¥ What are processor commands
called? What is the data used
by the commands called?

Processor command's are operation
codes, or opcodes; the data used

by the cosmands are the
operands,

¥ What are the verbal
descriptions of processor
commands called? What is a

program listing containing these
descriptions called?

Verbal descriptions are
wnemonics, and a progras listing
containing mnemonics is called
source code.

* What does an assesbler do?

fn assembler translates source

code into object, or binary,
code,

Course summary
What is an addressing mode?

fin addressing mode is the way a
machine language program gets
the information it needs to
complete an instruction.

What are the 6809's addressing
modes?

Inherent, register, immediate,
extended, direct, indexed and
relative,

Describe inherent addressing.

The mode in which the opcode
contains all the information the
processor needs to coaplete the
instruction.

* Describe register addressing.

The wmode in which a2 postbyte
describes the registers which
are used to complete the
instruction.
* Describe immediate
addressing.

The mode in which the
information to complete the
instruction imeediately follows
the opcode.

¥ Describe extended addressing.

The mode in which the
information is found at the
address given after the opcode.

+ Describe direct addressing.

The wode in which the
information is found at the
address calculated from the
direct page register and the
valug following the opcode.

Describe indexed addressing.

The wmode in which the
information is found at the
address calculated from a fixed
or variable offset and an index
register,

212 Lesson 24

system is a representation of ones and zeros, so the binary
system counts in powers of two. The binary digits (the bits)
are organized in groups of eight. These eight-bit groups are
called bytes, and the byte is the word size for the 6809
processor.

6809 words can stand for commands, data, characters, and
can be used for counting and distances. When 6809 words
are used as characters, those words are patterned in
accordance with the American Standard Code for
Information Interchange (ASCII).

All microprocessors have an overall organization known as
architecture. The architecture of the 6809 encompasses its
internal architecture, plus the ability to address 65,536
bytes of external memory. The internal architecture
includes an arithmetic logic unit (ALU), an instruction
decoder (ID), a 16-bit program counter (PC), two 8-bit
accumulators (A and B), two 16-bit index registers (X and
Y), two 16-bit stack points (S and U), an 8-bit direct page
register (DP), and an 8-bit condition code register holding
the flags (CC). The two 8-bit accumulators A and B can be
combined to produce the 16-bit accumulator D.

Commands to the 6809 processor are electronic impulses,
represented by binary digits, and organized as bytes. The
binary bytes are themselves thought of as two 4-bit groups,
each of which is represented in hexadecimal notation.
Hexadecimal notation, also called hex, counts from 0
through F and best expresses the character of 4-bit group.
The 4-bit half of a byte is sometimes called a nybble.

The hexadecimal notation represents the binary patterns,
but the commands themselves are further abstracted into
verbal descriptions. The verbal descriptions are called
mnemonics, and the mnemonics are used for the
construction of source code. Source code is a readable,
quasi-verbal description of the processor actions that
make up a complete program.

Source code is made up of mnemonics for binary machine
commands, called opcodes, and the necessary information
to complete the command, called the operand. Opcodes
and operands — together with labels, origins, ends, byte
descriptions, comments, and other information -— make up
the complete source listing. The source listing is entered
and edited using an assembler, and translated from its
source form to machine language by an assembler. The
assembler takes the source code and produces from it the
machine language, called object code.

The most common machine instructions move information
inside the processor, move information from the processor
to memory, and from the memory to the processor. These
are transfers, exchanges, stores and loads. The processor
manipulates this information through arithmetic and
logical functions. The arithmetic includes addition,
subtraction, multiplication, incrementing and decrement-
ing. The logic includes AND, OR, Complement, Negation,

Pt

VA
©

ol

T5A=ASCY| Z
D BA = Command DECB

§

——————ry
1
0 8 AT I N A

T§ IHEAERNN NSNS

=T 1]
NYeBie [/To] /0]
BYe [o[/[/T/T7]e]7]

LPA #+20

B 86

N

/000 o/ 0 1000 O/ /0

TFR

]

EX

Bt

(X,

[NHERERT

CLRA

RELISTER.
TRXY
IMMEDIATE.
LDX #$0400
EXTEMDED
LDY #1234
DireCT

LoX {$33
INDEXED

LB $41,X
INDIRECT

Loa [#19,Y]

FPOSITIVE.

ol /]o[s]o[T/]]

+
NEGATIVE.

[/{/1/]7]71/To]o]

Exclusive-OR. Other processor manipulations of data
include shifting or rotating bits left or right, testing for bits,
comparison with other data, clearing to zero, and special
functions for decimal addition and positive and negative
arithmetic.

The processor obtains its information by providing the
address of the data in external memory. The processor can
determine the address it needs in a variety of simple and
complex ways. These techniques are called addressing
modes.

Among the addressing modes in the 6809 processor are
inherent, register, immediate, extended, direct and
indexed. The inherent mode contains all the information
the processor needs to complete an instruction. The
register mode specifies information which informs the
processor what internal registers to use. The immediate
mode provides the processor with a value to use directly.
The extended mode gives the processor an address at
which it can find the information it needs. The direct mode
combines the special direct page register with information
tolocate the data in memory. The indexed mode calculates
a result from register information and fixed or variable
offsets, and uses the results of that calculation to find the
data in memory. Automatic incrementing or decrementing
of certain registers can be specified in the indexed
addressing mode. The relative mode instructs the
processor to find information in relation to its current
position in memory.

One of the features of the 6809 processor which speeds its
operation and makes access of data simpler is the indexed
indirect addressing mode. This mode applies to most of the
previous indexing modes, and permits the processor to
access information through a second level. The data is
found at the address specified by the data found at an
address determined by the processor from the instruction
of the operand. This doesn’t lend itself to a summary, so
refer to lessons 15, 16 and 17 for more.

Great program structure is achieved using the indexed
indirect addressing mode. By using an index relative to the
current position of the program counter, complete program
position independence within memory can be achieved.

The information actually received by the processor
through all these adddressing modes is simply one byte ata
time, but that byte can have many purposes. It can be a
simple number; it can be positive or negative (that is, be
signed); it can represent a character, or it can be part of a
memory address.

The memory addresses themselves are (from the
processor's viewpoint) identical. However, their
arrangement within the Color Computer is somewhat
different and quite specific. Because of the synchronous
address multiplexer (the SAM), the memory addresses
(known as the memory map) are organized for special

Learning the

Course summary

* Describe relative addressing.

The mode in which the
information is found relative to
the position of the program
counter,

* What are the levels of
addressing?

Non-indirect and indirect.
* What does SAM mean?

Synchronous Address

Multiplexer.

* What is found from $000R t{o
$7FFF in the Color Computer
memory map?

RAM (read-write mesory).

* What is found from 5608 to
$9FFF in the map?

The Extended Color BRSIC ROM
{read-only mewmory).

* Hhat is found from $ABMR to
$BFFF in the map?

The Color BASIC ROM.

+ What is found from $CO08 to
$FEFF in the map?

Cartridge ROM, when plugged in.

What is found from $FF@@ io
$FFFF in the map?

Vectors and 5AM registers,
control, ports, video graphics
display, processor speed, video
addresses, and other functions.

* What is assesbly?

The process of converting source
code (mnemonics) into object
{binary) code.

What is disassembly?

The process of translating

binary code inte a source
{wnemonic) listing.

6809 s

Course summary

¥ What does VDG mean, and what

is its purpose on the Color
Computer?

VIG weans Video Display
bereratory it is used for
alphanuweric, semigraphic, and
high-resolution graphic and

coior display.

¥ What does Hz mean? What does
it mean when it is said that the
Color Computer has a .89 MHz
clock?

Hz wmeans Hertz, clock pulses per
second; a .89 MHz clock means a
master set of pulses occurring
approximately 90,000 times per
serond.

* What is a position independent
program? What addressing wode
is essential to position
independent prograsming?

R machire language program
designed to run correctly no
matter where it is located in
memory is position independent.
Relative addressing is necessary
for position independent
progransing.

* What is an integer?
A number, positive or negative,
which contains no fractional or

decimal part.

+ What is
number?

a floating point

A number, positive or negative,
which contains a fractional or
decimal part.

214 Lesson 24

purposes. From the start of memory to address $7FFF is
reserved for read-write memory, or RAM; the next four
blocks of memory (starting at $8000, $A000, $C000 and
$EO000) are reserved for read-only memory, or ROM, and in
the Color Computer are used for Extended BASIC, Color
BASIC, and cartridge ROM. The last block is unused in the
Color Computer. RAM may be substituted for ROM under
certain conditions,

The last 256 bytes of memory are reserved for vectors and
control, ports, video graphics display, processor speed,
video addresses, and other functions. By writing
information to the SAM, these functions can be turned on
or off. Among the most important functions designed into
the Color Computer are: control of the cassette and printer
output; selection of 16 different low-, high-, and medium-
resolution color graphics modes; RS-232 communications
input and output; keyboard input; input from joysticks or
other analog devices; control over the processor’s clock
speed; output of sound; determination of available memory
and selection of the type of memory arrangement; control
of and storage of vectors for interrupts.

Source code is normally assembled using an editor/
assembler package, but hand assembly can be performed.
For hand assembly, a list of opcodes and their respective
hexadecimal equivalents is necessary. Also, it’s essential to
have a description of how each opcode works, the flags it
affects, and how its operands are constructed and used.

Assembly, whether by hand or using an assembler, is a two-
pass process. During the first pass, the opcodes are
assembled and put in place, and during the second pass the
operands are created, calculated or otherwise determined
directly from the operand information in the source listing,
or from the labels used in the listing.

During the assembly process, the automatic assembler
detects and reports errors. Hand assembly will reveal those
opcodes or operands which are not permitted according to
the information provided in the processor’s data booklet.

Even correct source code can produce incorrect results,
depending on the hardware configuration of the computer.
In the case of the Color Computer, the most cbvious
conflict is with the standard ASCII codes and the video
display generator, which uses a different arrangement of
the four groups of 32 characters. These hardware conflicts
are resolved by the programmer through debugging in
combination with a careful reading of the software aspects
of the hardware documentation.

During hand assembly, the timing of instructions may be
extremely critical. Especially during sound or
communications processes, the timing of each instruction
must be calculated. This timing is based on the computer’s
master clock frequency, which is specified as Hertz (Hz) or
clock cycles per second. All the timing information is
provided as part of the processor’s data booklet. Some

Not LBED

ZoM
PACK
COLOR
BASIC
EXTENORD
BASIC

SPECIAL.
VECERS

OCTA YF
oc9s SE
ocyc |Fgz
OCTE EP/
ocAg

$£2]1 = ASC
41 = VoG

UBeK

CLRA
cLRB
TFR DY
TER D, X

ny
4

TefMefTleMefT
g

,00000//2,
SECONDS

Course summary

1011700001
©I0/ /010, ., .

10/110777.1—
o/e1i0/0. ..

EXEC. ADDRESS
USR. (ARGUMENT)

timing is consistent with every occurrence of an instruction,
other timing depends on the character of the operand.

The goal of position independent programming — that is,
programs that will load and execute in any area of memory
— can be achieved with the 6809 processor. Position
independence is achieved using program-counter relative
instructions (,PCR instructions), load-effective-address
commands {LEA), long and short subroutine branches, and
long and short program counter branches (simple, simple
conditional, plus signed and unsigned conditional). By
structuring the program around modular subroutines, both
clarity and position independence can result.

Among the less clear aspects of programming is the
handling of floating-point numbers, that is those numbers
consisting of both an integer and fractional part. The
representation in the Color Computer is as a power of two
exponent plus a four-byte mantissa. This achieves an
overall accuracy of ten digits and an overall range of ten to
the plus-or-minus 38th power.

Using these numbers, and using BASIC at all, requires an
understanding of its handling of free memory, how it loads
machine-language programs, and the accessing of machine
language programs via EXEC and USR. BASIC’s USR
command permits direct transfer of numerical or text
information to a machine-language subroutine. BASIC’s
VARPTR command permits access to BASIC variables for
use by a machine-language subroutine, and also provides a
unique method of packing a machine-language program
into a BASIC string variable in a program line.

The 6809 processor was created with interrupts in mind.
Interrupts are hardware signals which cause the processor
to set aside its current program and perform an interrupt
service routine. Interrupts are use to provide accurate and
program-independent timing and control functions.
Hardware interrupts IRQ, FIRQ and NMI are used on the
Color Computer; software interrupts SWI, SWI2 and
SWI3 are used in ZBUG and in other kinds of program
debugging, and for fast operating system subroutine calls
on other kinds of computers.

Interrupts may be used for very fast timing, such as for
synchronization with the video display. Video signals are
used for interrupts on the Color Computer, and can be used
as ordinary interrupts or in combination with the SYNC or
CWAI commands for complete synchronization with the
monitor picture.

The process of creating complete assembly language
programs involves thinking the application through,
creating a structure, writing modular subroutines, linking
together the individual pieces, and debugging the whole.

Your Micro Language Lab course in Learning the 6809 is
over, but your facility in programming has just begun. Now
that you've reached this point, many earlier programs will

Learning the

* What BASIC comsands are used
for accessing sachine language
programs? What does each mean?

EXEC, USR, DEFUSR, VARPTR, POKE
and CLORDM. EXEC means execute
a machine language progras at
the given entry point (starting
address). USR means execute a
wachine language oprograms, and
transfer a variable fros BASIC
to it. DEFUSR defines a machine
language program entry point
{starting address). VARPTR
means variable pointer, and is
used to determine the position
of a BRSIC variable in memory,
It can be used for packing
machine language programs into
BASIC string variables. POKE

places a byte directly into
WEHOrY. CLDADM loads binary
information directly inta
WEMOIY.

+ What are the 6889 interrupts?

Hardware interrupts NMI, FIRG,
IRD and software interrupts SWI,
SWIZ, and SWI3.

¥ What happens when an interrupt
occurs?

The processor completes its
current instruction, saves
important machine information,
and services the interrupt.

* What coemands stop processor
operation and wait for an
interrupt?

SYNC and CWAL.

* Your course in learning the
68089 is now complete. 1 welcomwe
your reaction, especially to
this programmed learning
section. Please send your
comsents to me, Demnis Kitsz,
Green Mountain Micro, Roxbury,
Vermont 83669,

6809 us

Course summary

216

Lesson 24

begin to make more sense. Please review this course lesson
by lesson, continue to use the question-and-answer
programmed text in the margins, and try each of the
example programs. The ability to program the 6809 — and
all its smart cousins — is now yours.

I'm your programming guide, Dennis Kitsz. Good bye.

When You See It In Memory, What Is It?

This chart is a cross-reference of all Color Computer codes from $00 to $FF.
The codes are presented in binary, hexadecimal and decimal, followed by their
ASCIH equivalents. Both the 6809 procesor command mnemonic and BASIC
“tokens” are given. The 10+ and 11+ commands are 6809 processor commands
which use the value $10 or $11 as a prefix to other commands. For example, $10
21 is the opcode for long branch never (LBRN). Likewise, there are BASIC
commands which take the prefix $FF. For example, token $82 is REM, whereas

$FF 82 represents ABS.

BINARY

0008 oo0e
0008 029!
G008 vale
002 8ait
odde 0108
6obe e101
000 8118
00 @111
02 1002
0020 1081
oo 18ie
008 1811
008 1102
2008 1161
%08 111@
fode 1111

0001 ool
0001 a0t
0001 o0
0081 0811
2081 61
081 @1
01 0118
0001 0111
0021 1009
8001 1021
81 1018
oo 1811
008! 1182
e 11

b1 {110

@291 1111

HEX DECIWAL ASCII COMMAND 16+COMMAND 11+COMMAND BRSIC COMMAND FF+COMMAND

ETRESBEITEIZOR/=E

WL ~dLADW D

NiL
504
57X
ETX

m
g

NBQNSEHEREPEE

seeaBEeBd2888RER

NEG

LSR
ROR
ASR
ASL, LSL
ROL
DEC
N
187
™
CLR

(BEE 18+)
{SEE 11+)

00 T I O I O O

RN

N T T U T O O O U

I I I

56N
INT

2523 §5§5EArgEgELT

AN

TAN
EXP
FIX
LO6

HEXS
VARPTR
INSTR
TINER

Appendix

217

Appendix

218

da1e oead
2018 eeei
éo1¢ ea1e
éaie eeii
8310 d108
seig eiel
812 o110
2010 8111
2010 1008
12 1081
8218 1810
0219 101!
G210 1100
8016 116t
o016 111e

- 8218 1111

8211 008
8011 oBei
11 eeld
8211 eell
GB11 e1d0
oo11 slat
9811 8110
8211 8111

811
o1l
a1
8811
o811
a1
eat1
oot

1808
1081
ie1@
81l
1198
1ot
1118
1111

2102 0
8108 ddal
0100 oaie
e1ee 0211
2102 o108
8102 8ie1
o108 8118
8162 8111
2100 1008
2160 1061
ei6¢ i81@
a1 1811
eiee 1100
glee 1iet
eioe 1110
g108 1111

FHEEEEREIFSTOARTE HHBEHBEERBYHHPURZE RREBBRBRYRD

IFLHELRZSERYBHYHR

ELFRHRT SR EBILRNLILRELE S

4 W o v oo P oW WS .._§

-

-~ "

N e ee 00 DDA T e

O EXM X tyg= T OHMM OO ®

BRN
BHI
BLS
BHS, BCC
BLD, BCS

RTS

LBRN
LBHI
LBLS
LBHS, LBCC
LBLO, BLCS

T I O

£

2

I O U T U O O I O O AR O

PEEErErrrr bbb

£

3

AN

T T O U O U R O AR N

0181 2008

8101

o001

o101 eele
@181 eaii
0101 8100
g101 @isl
giel o110
gie1 @11l

e1ei
giet
eiel
éie1
s1et
e181
a1ét
e1e1

1008
1081
1818
1814
1108
1181
1118
1

2110 eode
8118 o081
giie edie
8118 8d11
8110 e1g
8116 @161
o110 o110
8118 8111
0110 108a
8118 leat
dile 1810
@118 1011
8118 1100
ei1e 118t
8118 1110
g118 11

0111 odod
@111 ool
e11i edie
2111 eaii
8111 o108
8111 @181
a111 811@
8111 @11

eiil
i
2111
a1l
a1t
811
et
81l

1e8@
1e8i
ie1e
11
1108
1181
111e
1111

FRECEESEIRGTIR2E ¥MMEBHEERZEURUTERBLE

BEYR BLEK2EBETRATERES

124

N ETC< oD~ v

L. BT,

R.BKT.
CARAT
L.ARR.

O B R o X = ITE - D N T MW

N X I < & 0 3.0

L' BM.
SEP.
R. BRLE.

DELETE

NEGR

LSRB
RORB
ASRB
ASLB, LSLB
DECB

INCB
T5TB

CLRE

CLR

0 T T T O I R O A O

Lt

RN

Prreereirerertd

I O O O I OO AR

Pirerer et b

Appendix

219

Appendix

220

1002 do0e
1000 000!
1800 oa1e
1080 #@i1
1088 6108
1880 0181
1662 8118
1688 8111
1602 1088
1680 1081
1608 1618
1see 1811
1000 1108
1680 1181
1008 1116
1e80 1111

1081 80
1681 oda!
1001 eala
1021 oeif
1001 1w
1081 @101
1981 @118
1081 @i

i0a!
1031
1081
1081
L)
168t
1081
108t

1600
1001
1e1e
el
1100
1101
111e
i

1e1@ 6800
1818 oda1
i8ie oa10
1818 ad1i
1816 2108
1018 8181
1e1e éi10
1810 8111
ie1e 1600
1010 1e8i
ie1e ie1e
1618 1811
181@ 1182
1@ 1101
161¢ 1118
ig1e 1114

FREEEBRIEIRFPERTE ARSBEBELIRERLEE2E SREBTEIBIRGERER=S

128
189
138
131
13
133
134
135
136
137
138
133
148
141
142
143

144
145
146
147
148
149
150
D1
152
133
154
135
136
157
158
139

168
161
162
163
164
165
166
167
168
169
17¢
m
17
173
174
i75

Wl Do WY, = g o w

8 = " Mk PR clow s> WY, == g

.%-.

e P E ol un o™

BITR

STA
EORA

RODA
Cmpx
JSR
LDX
57X

BITA

5TR
EORA

0RA

onpx
JSR
LbX
51X

Cupy

LDY
STY

NEREEEEE SN

¥

ps

| 1]

g8g

IF
DATA
PRINT
INPUT
NEXT
DIN

RESTORE

LLIST

NOTOR

ATN

EXP
FIX
L0B

S8R
HEXS
VARPTR
INSTR
TIMER

PPOINT
STRINGS

R R U T O A O B O

1011 odoR
1811 oe8i
1811 6218
1811 oeit
1611 @180
11 e1et
111 1@
1a11 o1

1e11
el
81
14
1811
ieit
1811
111

108e
081
1818
811
[188
1181
111e
14

1108 008
1100 2981
1106 8818
1108 @it
1168 8160
1168 @101
1108 @i1e
1109 @11t
1180 1008
1100 108t
1168 18i@
1198 1811
1100 1108
1108 1181
{106 111@
1100 1111

1101 oode
1191 008t
1181 ea18
1181 8811
1181 o108
1181 eit
118t al10
118f @i

1181
1184
1181
1181
1181
104
11et
1181

1080
1
1018
1011
1108
11es
1118
1141

FRESSEZESFOFEREE YWREHEEBEZESRERIREE NREEEEIESREFERER

176
imn
178
i
188
181
18
183
184
185
186
187
88
189

194

Bl B e WY § , = N dwed™ e Y= g o, =

gy -

B o o”n

J5R
LDX
51X

BITB
LbB

4
3

ELNE NN

LTI EE LT

agl bt

Pebrrberrr ettt et rrrgrr it b i gn

SR U A O I R O R

EA"VQS

PCLEAR
COLOR
CIRCLE
PRINT

00 T T T I I O O

Appendix

221

Appendix

222

1110 0008 E0 224 SUBB — — —
1@ 008 B 25 CHPB — — —
1110 @010 E2 26 SECH — — —
1110 8811 E3 227 ADDD — —_ —
1110 0108 E4 228 ! ANDB —_ — —
ieeien 5 229 1! BITB — — —
1@ o118 6 238 O LDB — — —_
miees g7 2 P STR — — —
1116 1080 EB 23 ' EORB — — —
1110 1881 E9 233 % ADCB — — -
1118 1010 ER 234 i ORB — — —
1@ 1011 8 233 1 ADDB — — —_
1116 1108 EC 23% = LDD — — —
1116 1161 ED 237 b STD — — —_
t11@ 1110 e 238 ¢ LDu LDs — —
ey g 2 B STU 8T8 — —
1111 9808 F8 240 SUBB — — —_
111 o081 Ft 261 " CHPB — — —_
1111 818 F2 262 ° SBCB — — —
111 @11 F3 243 @ ADDD —_ — —_
1111 0100 F4 266 & ANDB — —_ —_
i1 o0 F5 a5 | BITB — — —
111 0118 F6 246 o LDB — — —
it ey F7 247 P STB — — —_
1111 1808 FB 248 ' EORB — — —
111 1801 F3 249 % ADCB — — —_
1111 1018 FA 250 ! ORB — — —
i1 181t FB 251 % ADDB — — -—
111 1100 FC 252 = LD — — —
11111161 FD 253 & 51D — — —
it 1118 FE 254 4 L L8 —_ —
My FF o255 B STU 58 —_ {SEE FF+)

Cassette Loading Problems

The Micro Language Lab tapes contain both audio and programs. Until you get
accustomed to the voice-data sequence, you may experience some loading
problems.

. Be sure to have the volume adjusted properly for program loading. Our
cassettes load very well with the CTR-80A volume set between 6 and 7,
although this may be too loud for listening to the audio.

2. These are 60-minute cassettes and should be treated as good music tapes.
Your tape recorder must be clean and demagnetized. Obtain cleaning solution
and demagnetizers from a Radio Shack or other hi-i store.

3. Don’t miss the beginning of the program. When you hear “turn the tape off
now”, than means now! The program begins within 5 seconds.

4. Should you have continued loading problems with one program or one
tape, you may exchange the defective tape at no charge. Should you have
loading problems with several tapes, suspect your tape player. We use good
tape and excellent mastering and duplication equipment to assure quality.

5. Hf you find the audio-data combination cumbersome, Green Mountain
Micro can offer you a separate tape containing all the Micro Language Lab
programs. Call or write for price and availability.

	6809_ch01_preface
	6809_ch02
	6809_ch03
	6809_ch04_05
	6809_ch06_07
	6809_ch08_09
	6809_ch10_11
	6809_ch12_13
	6809_ch14_15
	6809_ch16_17
	6809_ch18_19
	6809_ch20_21
	6809_ch22_23_24
	6809_appendix

